
DEVSIM Manual
Release 1.0.0-rc1

Devsim LLC

Nov 02, 2018

Contents

List of Figures vii

List of Tables ix

1 Front Matter 1
1.1 Contact . 1
1.2 Copyright . 1
1.3 Documentation License . 1
1.4 Disclaimer . 1
1.5 Trademark . 1

2 Release Notes 3
2.1 Introduction . 3
2.2 1.0.0-rc1 Nov 02, 2018 . 3
2.3 July 20, 2018 . 4
2.4 May 15, 2017 . 5
2.5 February 6, 2016 . 6
2.6 November 24, 2015 . 7
2.7 November 1, 2015 . 7
2.8 September 6, 2015 . 8
2.9 August 10, 2015 . 8
2.10 July 16, 2015 . 8
2.11 June 7, 2015 . 9
2.12 October 4, 2014 . 9
2.13 December 25, 2013 . 9
2.14 September 8, 2013 . 10
2.15 August 14, 2013 . 10
2.16 July 29, 2013 . 11

3 Introduction 13
3.1 Overview . 13
3.2 Goals . 13
3.3 Structures . 13
3.4 Equation assembly . 14
3.5 Parameters . 14
3.6 Circuits . 14
3.7 Meshing . 14

iii

3.8 Analysis . 14
3.9 Scripting interface . 15
3.10 Expression parser . 15
3.11 Visualization and postprocessing . 15
3.12 Installation . 15
3.13 Additional information . 15
3.14 Examples . 15

4 Equation and Models 17
4.1 Overview . 17
4.2 Bulk models . 21
4.3 Interface . 24
4.4 Contact . 26
4.5 Custom matrix assembly . 28
4.6 Cylindrical Coordinate Systems . 29

5 Model Parameters 31
5.1 Parameters . 31
5.2 Material database entries . 31
5.3 Discussion . 31

6 Circuits 33
6.1 Circuit elements . 33
6.2 Connecting devices . 33

7 Meshing 35
7.1 1D mesher . 35
7.2 2D mesher . 36
7.3 Using an external mesher . 37
7.4 Loading and saving results . 38

8 Solver 39
8.1 Solver . 39
8.2 DC analysis . 39
8.3 AC analysis . 39
8.4 Noise/Sensitivity analysis . 39
8.5 Transient analysis . 40

9 User Interface 41
9.1 Starting DEVSIM . 41
9.2 Python Language . 41
9.3 Error handling . 42

10 SYMDIFF 45
10.1 Overview . 45
10.2 Syntax . 45
10.3 Invoking SYMDIFF from DEVSIM . 50

11 Visualization 51

iv

11.1 Introduction . 51
11.2 Using Tecplot . 51
11.3 Using Postmini . 51
11.4 Using Paraview . 51
11.5 Using VisIt . 52
11.6 DEVSIM . 52

12 Installation 53
12.1 Availability . 53
12.2 Supported platforms . 53
12.3 Binary availability . 53
12.4 Source code availability . 54
12.5 Directory Structure . 54
12.6 Running DEVSIM . 54

13 Additional Information 55
13.1 DEVSIM License . 55
13.2 SYMDIFF . 55
13.3 External Software Tools . 55
13.4 Library Availablilty . 56

14 Command Reference 59
14.1 Circuit Commands . 59
14.2 Equation Commands . 60
14.3 Geometry Commands . 65
14.4 Material Commands . 65
14.5 Meshing Commands . 68
14.6 Model Commands . 74
14.7 Solver Commands . 85

15 Example Overview 87
15.1 capacitance . 87
15.2 diode . 87
15.3 bioapp1 . 87
15.4 genius . 87
15.5 vector_potential . 88
15.6 mobility . 88

16 Capacitor 89
16.1 Overview . 89
16.2 1D Capacitor . 89
16.3 Setting device parameters . 90
16.4 2D Capacitor . 93
16.5 Defining the mesh . 93
16.6 Setting up the models . 94
16.7 Fields for visualization . 96
16.8 Running the simulation . 96

17 Diode 99

v

17.1 1D diode . 99
17.2 Physical Models and Parameters . 100

Bibliography 105

Index 107

vi

List of Figures

4.1 Mesh elements in 2D. 18
4.2 Edge model constructs in 2D. 19
4.3 Element edge model constructs in 2D. 20
4.4 Interface constructs in 2D. Interface node pairs are located at each ∙. The SurfaceArea

model is used to integrate flux term models. 25
4.5 Contact constructs in 2D. 27

15.1 Simulation result for solving for the magnetic potential and field. The coloring is by the Z
component of the magnetic potential, and the stream traces are for components of magnetic
field. 88

16.1 Capacitance simulation result. The coloring is by Potential, and the stream traces are
for components of ElectricField. 98

17.1 Carrier density versus position in 1D diode. 102
17.2 Potential and electric field versus position in 1D diode. 103
17.3 Electron and hole current and recombination. 104

vii

viii

List of Tables

4.1 Node models defined on each region of a device. 21
4.2 Edge models defined on each region of a device. 22
4.3 Element edge models defined on each region of a device. 23
4.4 Required derivatives for equation assembly. model is the name of the model being evalu-

ated, and variable is one of the solution variables being solved at each node. 23
4.5 Required derivatives for interface equation assembly. The node model name nodemodel

and its derivatives nodemodel:variable are suffixed with @r0 and @r1 to denote
which region on the interface is being referred to. 24

10.1 Basic expressions involving unary, binary, and logical operators. 46
10.2 Predefined Functions. 47
10.3 Commands. 48
10.4 Commands for user functions. 48

12.1 Current platforms for DEVSIM. 53
12.2 Directory structure for DEVSIM. 54

17.1 Python package files. 99

ix

x

Chapter 1

Front Matter

1.1 Contact

Web: https://devsim.com
Email: info@devsim.com
Open Source Project: https://devsim.org

1.2 Copyright

Copyright © 2009–2018 DEVSIM LLC

1.3 Documentation License

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/.

1.4 Disclaimer

DEVSIM LLC MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

1.5 Trademark

DEVSIM is a registered trademark and SYMDIFF is a trademark of DEVSIM LLC. All other product or
company names are trademarks of their respective owners.

1

https://devsim.com
mailto:info@devsim.com
https://devsim.org
http://creativecommons.org/licenses/by-nd/4.0/

DEVSIM Manual, Release 1.0.0-rc1

2 Chapter 1. Front Matter

Chapter 2

Release Notes

2.1 Introduction

DEVSIM download and installation instructions are located in Installation (page 53). The following sections
list bug fixes and enhancements over time. The official website for this project is located at https://devsim.
org.

2.2 1.0.0-rc1 Nov 02, 2018

2.2.1 Version

Due to the numerous changes in the Python API, the version number has been updated to having a major
revision of 1. We adopt the semantic version numbering presented at https://semver.org. The version number
can be accessed through the Python interface using the devsim.__version__ variable.

2.2.2 Python Support

DEVSIM is now loaded as a shared library from any compatible Python interpreter. Previously, DEVSIM
binaries contained an embedded Python interpreter. The following versions of Python are supported in this
release

• 2.7

• 3.6

• 3.7

By first setting the PYTHONPATH variable to the lib directory in the DEVSIM distribution, devsim is
loaded by using

import devsim

3

https://devsim.org
https://devsim.org
https://semver.org

DEVSIM Manual, Release 1.0.0-rc1

from Python. Previous versions of devsim used the ds module, the manual will be updated to reflect the
change in module name.

Many of the examples in the distribution rely on the python_packages module, which is available by
using:

import devsim.python_packages

The default version of Python for use in scripts is 3.7, however scripts written for earlier versions of
Python 3 should work. Python 2.7 is deprecated for future development.

Anaconda Python 3.7 is the recommended distribution and is available from https://continuum.io. The
Intel Math Kernel Library is required for the official DEVSIM releases. These may be installed
in Anaconda using the following command:

conda install mkl

Some of the examples and tests also use numpy, which is available using:

conda install numpy

Please see User Interface (page 41) and Installation (page 53) for more information.

2.3 July 20, 2018

2.3.1 Documentation

The documentation has a new license, which is described in Copyright (page 1). The source files are now
available for download from: https://github.com/devsim/devsim_documentation.

2.3.2 Python 3 Support

Python 3 executable, devsim_py3 is now supplied in addition to standard Python 2 executable, devsim.

2.3.3 Element Information

The devsim.get_element_node_list() (page 65) retrieves a list of nodes for every element on a
region, contact, or interface.

2.3.4 Interface Boundary Condition

The type=hybrid option is now available for the devsim.interface_equation() (page 64)
command. Please see Interface equation assembly (page 26) for information about boundary conditions.

4 Chapter 2. Release Notes

https://continuum.io
https://github.com/devsim/devsim_documentation

DEVSIM Manual, Release 1.0.0-rc1

2.3.5 Interace Equation Coupling

The name0, and name1 options are now available for the devsim.interface_equation()
(page 64) command. They make it possible to change the equation coupling in each region.

2.3.6 Interface and Contact Surface Area

Contact surface area is no longer included in SurfaceArea node model. It is now placed in
ContactSurfaceArea. These are listed in Table 4.1.

2.3.7 Bug Fixes

• The devsim.interface_equation() (page 64) command is fixed for type=fluxterm
boundary conditions on the interface.

• The devsim.get_material() (page 66), and devsim.set_material() (page 67) now
properly handle the contact option.

• Interface equation assembly properly skips nodes when an interface node is shared with a contact.

2.3.8 Extended Precision

The following new parameters are available:

• extended_solver, extended precision matrix for Newton and linear Solver

• extended_model, extended precision model evaluation

• extended_equation, extended precision equation assembly

When compiled with 128-bit extended precision support, these options enable calculations to be performed
with higher precision. Default geometric models, are also calculated with extended precision.

devsim.set_parameter(name = "extended_solver", value=True)
devsim.set_parameter(name = "extended_model", value=True)
devsim.set_parameter(name = "extended_equation", value=True)

Currently, the Linux and gcc-based Apple Mac OS X versions have extended precision support.

2.4 May 15, 2017

2.4.1 Platforms

• The Ubuntu 16.04 (LTS) platform is now supported.

• The Ubuntu 12.04 (LTS), Centos 5 (Red Hat 5 compatible) platforms are no longer sup-
ported. These platforms are no longer supported by their vendors.

2.4. May 15, 2017 5

DEVSIM Manual, Release 1.0.0-rc1

• Apple Mac OS X compiled with flat_namespace to allow substitution of dynamically linked
libraries.

• Microsoft Windows 7 is compiled using Microsoft Visual Studio 2017.

2.4.2 Binary Releases

• Releases available from https://github.com/devsim/devsim/releases.

• Centos 6 released is linked against the Intel Math Kernel Library.

• Microsoft Windows 7 release is linked against the Intel Math Kernel Library

• Apple Mac OS X can optionally use the Intel Math Kernel Library.

• Anaconda Python 2.7 is the recommended distribution.

• Please see release notes for more information.

2.4.3 Bug Fixes

• 3d element edge derivatives were not being evaluated correctly

• 3d equation model evaluation for element edge models

2.4.4 Enhancements

• Build scripts are provided to build on various platforms.

• DEVSIM mesh format stores elements, instead of just nodes, for contact and interfaces

• The devsim.create_gmsh_mesh() (page 73) command can be used to create a device from a
provided list of elements.

2.4.5 Example Availability

• BJT simulation example available from https://github.com/devsim/devsim_bjt_example.

2.5 February 6, 2016

DEVSIM is now covered by the Apache License, Version 2.0 [ApacheSoftwareFoundation]. Please see the
NOTICE and LICENSE file for more information.

6 Chapter 2. Release Notes

https://github.com/devsim/devsim/releases
https://github.com/devsim/devsim_bjt_example

DEVSIM Manual, Release 1.0.0-rc1

2.6 November 24, 2015

2.6.1 Python Help

The Python interpreter now has documentation for each command, derived from the documentation in the
manual. For example, help for the devsim.solve() (page 85) can be found using:

help("devsim.solve")

2.6.2 Manual Updates

The manual has been updated so that commands are easier to find in the index. Every command now has a
short description. Cross references have been fixed. The date has been added to the front page.

2.7 November 1, 2015

2.7.1 Convergence Info

The devsim.solve() (page 85) now supports the info option. The solve command will then return
convergence information.

2.7.2 Python Interpreter Changes

The way DEVSIM commands are loaded into the devsim module has been changed. It is now possible to
see the full list of DEVSIM commands by typing

help('devsim')

in the Python interpreter.

2.7.3 Platform Improvements and Binary Availability

Many improvements have been made in the way binaries are generated for the Linux, Apple Mac OS
X, and Microsoft Windows platforms.

For Linux (see linux.txt):

• Create Centos 5, (Red Hat Enterprise Linux 5 compatible) build

• Build uses Intel Math Kernel Library math libraries (community edition)

• Build uses any compatible Python 2.7, including Anaconda

• Build compatible with newer Linux distributions.

For Apple Mac OS X (see macos.txt):

2.6. November 24, 2015 7

DEVSIM Manual, Release 1.0.0-rc1

• Uses the system Python 2.7 on Mac OS X 10.10 (Yosemite)

• Provide instructions to use Anaconda Python

For Microsoft Windows (see windows.txt):

• Uses any compatible Python 2.7, including Anaconda

• Build uses Intel Math Kernel Library Community Edition

Binary releases are available for these platforms at https://devsim.org.

2.8 September 6, 2015

The devsim.set_node_values() (page 83) takes a new option, values. It is a list containing values
to set for all of the nodes in a region.

The following new commands have been added:

• devsim.get_equation_list() (page 63)

• devsim.get_contact_equation_list() (page 63)

• devsim.get_interface_equation_list() (page 64)

• devsim.delete_equation() (page 62)

• devsim.delete_contact_equation() (page 61)

• devsim.delete_interface_equation() (page 62)

• devsim.get_equation_command() (page 63)

• devsim.get_contact_equation_command() (page 63)

• devsim.get_interface_equation_command() (page 64)

2.9 August 10, 2015

The devsim.create_contact_from_interface() (page 72) may be used to create a contact
at the location of an interface. This is useful when contact boundary conditions are needed for a region
connected to the interface.

2.10 July 16, 2015

The devsim.set_node_value() (page 83) was not properly setting the value. This issue is now
resolved.

8 Chapter 2. Release Notes

https://devsim.org

DEVSIM Manual, Release 1.0.0-rc1

2.11 June 7, 2015

The devsim.equation() (page 62) now suppports the edge_volume_model. This makes it possi-
ble to integrate edge quantities properly so that it is integrated with respect to the volume on nodes of the
edge. To set the node volumes for integration, it is necessary to define a model for the node volumes on both
nodes of the edge. For example:

devsim.edge_model(device="device", region="region", name="EdgeNodeVolume",
equation="0.5*EdgeCouple*EdgeLength")

set_parameter(name="edge_node0_volume_model", value="EdgeNodeVolume")
set_parameter(name="edge_node1_volume_model", value="EdgeNodeVolume")

For the cylindrical coordinate system in 2D, please see Cylindrical Coordinate Systems (page 29).

Mac OS X 10.10 (Yosemite) is now supported. Regression results in the source distribution are for
a 2014 Macbook Pro i7 running this operating system.

2.12 October 4, 2014

2.12.1 Platform Availability

The software is now supported on the Microsoft Windows. Please see Supported platforms (page 53)
for more information.

2.13 December 25, 2013

2.13.1 Binary Availability

Binary versions of the DEVSIM software are available for download from http://sourceforge.net/projects/
devsim. Current versions available are for

• Mac OS X 10.10 (Yosemite)

• Red Hat Enterprise Linux 6

• Ubuntu 12.04 (LTS)

Please see Installation (page 53) for more information.

2.13.2 Platforms

Mac OS X 10.10 (Yosemite) is now supported. Support for 32 bit is no longer supported on this
platform, since the operating system is only released as 64 bit.

Regression data will no longer be maintained in the source code repository for 32 bit versions of Ubuntu
12.04 (LTS) and Red Hat Enterprise Linux 6. Building and running on these platforms will
still be supported.

2.11. June 7, 2015 9

http://sourceforge.net/projects/devsim
http://sourceforge.net/projects/devsim

DEVSIM Manual, Release 1.0.0-rc1

2.13.3 Source code improvements

The source code has been improved to compile on Mac OS X 10.10 (Yosemite) and to comply with
C++11 language standards. Some of the structure of the project has been reorganized. These changes to the
infrastructure will help to keep the program maintainable and useable into the future.

2.14 September 8, 2013

2.14.1 Convergence

If the simulation is diverging for 5 or more iterations, the simulation stops.

2.14.2 Bernoulli Function Derivative Evaluation

The dBdx math function has been improved to reduce overflow.

2.14.3 Default Edge Model

The edge_index is now a default edge models created on a region Table 4.2.

2.15 August 14, 2013

2.15.1 SYMDIFF functions

The vec_max and vec_min functions have been added to the SYMDIFF parser (Table 10.2). The
vec_sum function replaces sum.

2.15.2 Default Node Models

The coordinate_index and node_index are now part of the default node models created on a region
(Table 4.1}).

2.15.3 Set Node Value

It is now possible to use the devsim.set_node_value() (page 83) to set a uniform value or indexed
value on a node model.

2.15.4 Fix Edge Average Model

Fixed issue with devsim.edge_average_model() (page 77) during serialization to the DEVSIM for-
mat.

10 Chapter 2. Release Notes

DEVSIM Manual, Release 1.0.0-rc1

2.16 July 29, 2013

2.16.1 DEVSIM is open source

DEVSIM is now an open source project and is available from https://github.com/devsim/devsim. License
information may be found in DEVSIM License (page 55). If you would like to participate in this project or
need support, please contact us using the information in Contact (page 1). Installation instructions may be
found in Installation (page 53).

2.16.2 Build

The Tcl interpreter version of DEVSIM is now called devsim_tcl, and is located in /src/main/ of
the build directory. Please see the INSTALL file for more information.

2.16.3 Contact Material

Contacts now require a material setting (e.g. metal). This is for informational purposes. Contact models
still look up parameter values based on the region they are located.

2.16.4 External Meshing

Please see Using an external mesher (page 37) for more information about importing meshes from other
tools.

Genius Mesh Import DEVSIM can now read meshes written from Genius Device Simulator.
More information about Genius is in Genius (page 37).

Gmsh Mesh Import DEVSIM reads version 2.1 and 2.2 meshes from Gmsh. Version 2.0 is no longer
supported. Please see Gmsh (page 38) for more information.

2.16.5 Math Functions

The acosh, asinh, atanh, are now available math functions. Please see Table 10.2.

2.16.6 Test directory structure

Platform specific results are stored in a hierarchical fashion.

2.16. July 29, 2013 11

https://github.com/devsim/devsim

DEVSIM Manual, Release 1.0.0-rc1

12 Chapter 2. Release Notes

Chapter 3

Introduction

3.1 Overview

DEVSIM is a technology computer-aided design (TCAD) software for semiconductor device simulation.
While geared toward this application, it may be used where the control volume approach is appropriate for
solving systems of partial-differential equations (PDE’s) on a static mesh. After introducing DEVSIM, the
rest of the manual discusses the key components of the system, and instructions for their use.

DEVSIM is available from https://devsim.org. The source code is available under the terms of
the Apache License Version 2.0 [ApacheSoftwareFoundation]. Examples are released under
the Apache License Version 2.0 [ApacheSoftwareFoundation]. Contributions to this project are
welcome in the form of bug reporting, documentation, modeling, and feature implementation.

3.2 Goals

The primary goal of DEVSIM is to give the user as much flexibility and control as possible. In this regard,
few models are coded into the program binary. They are implemented in human-readable scripts that can be
modified if necessary.

DEVSIM has a scripting language interface (User Interface (page 41)). This provides control structures and
language syntax in a consistent and intuitive manner. The user is provided an environment where they can
implement new models on their own. This is without requiring extensive vendor support or use of compiled
programming languages.

SYMDIFF (SYMDIFF (page 45)) is the symbolic expression parser used to allow the formulation of device
equations in terms of models and parameters. Using symbolic differentiation, the required partial derivatives
can be generated, or provided by the user. DEVSIM then assembles these equations over the mesh.

3.3 Structures

Devices A device refers to a discrete structure being simulated. It is composed of the following types of
objects.

13

https://devsim.org

DEVSIM Manual, Release 1.0.0-rc1

Regions A region defines a portion of the device of a specific material. Each region has its own system
of equations being solved.

Interfaces An interface connects two regions together. At the interfaces, equations are specified to
account for how the flux in each device region crosses the region boundary.

Contacts A contact specifies the boundary conditions required for device simulation. It also specifies
how terminal currents are are integrated into an external circuit.

3.4 Equation assembly

Equation assembly of models is discussed in Equation and Models (page 17).

3.5 Parameters

Parameters may be specified globally, or for a specific device or region. Alternatively, parameters may be
based on the material type of the regions. Usage is discussed in Model Parameters (page 31).

3.6 Circuits

Circuit boundary conditions allow multi-device simulation. They are also required for setting sources and
their response for AC and noise analysis. Circuit elements, such as voltage sources, current sources, resis-
tors, capacitors, and inductors may be specified. This is further discussed in Circuits (page 33).

3.7 Meshing

Meshing is discussed in Meshing (page 35).

3.8 Analysis

DEVSIM offers a range of simulation algorithms. They are discussed in more detail in Solver (page 39).

DC The DC operating point analysis is useful for performing steady-state simulation for a different bias
conditions.

AC At each DC operating point, a small-signal AC analysis may be performed. An AC source is pro-
vided through a circuit and the response is then simulated. This is useful for both quasi-static capacitance
simulation, as well as RF simulation.

Noise/Sensitivity Noise analysis may be used to evaluate how internal noise sources are observed in the
terminal currents of the device or circuit. Using this method, it is also possible to simulate how the device
response changes when device parameters are changed.

14 Chapter 3. Introduction

DEVSIM Manual, Release 1.0.0-rc1

Transient DEVSIM is able to simulate the nonlinear transient behavior of devices, when the bias conditions
change with time.

3.9 Scripting interface

The scripting interface to DEVSIM is discussed in User Interface (page 41).

3.10 Expression parser

The expression parser is discussed in SYMDIFF (page 45).

3.11 Visualization and postprocessing

Visualization is discussed in Visualization (page 51).

3.12 Installation

Installation is discussed in Installation (page 53).

3.13 Additional information

Additional information is discussed in Additional Information (page 55).

3.14 Examples

Examples are discussed in the remaining chapters beginning with Example Overview (page 87).

3.9. Scripting interface 15

DEVSIM Manual, Release 1.0.0-rc1

16 Chapter 3. Introduction

Chapter 4

Equation and Models

4.1 Overview

DEVSIM uses the control volume approach for assembling partial-differential equations (PDE’s) on the
simulation mesh. DEVSIM is used to solve equations of the form:

𝜕𝑋

𝜕𝑡
+∇ · 𝑌⃗ + 𝑍 = 0

Internally, it transforms the PDE’s into an integral form.∫︁
𝜕𝑋

𝜕𝑡
𝜕𝑟 +

∫︁
𝑌⃗ · 𝜕𝑠+

∫︁
𝑍𝜕𝑟 = 0

Equations involving the divergence operators are converted into surface integrals, while other components
are integrated over the device volume.

In Fig. 4.1, 2D mesh elements are depicted. The shaded area around the center node is referred to as the
node volume, and it is used for the volume integration. The lines from the center node to other nodes are
referred to as edges. The flux through the edge are integrated with respect to the perpendicular bisectors
(dashed lines) crossing each triangle edge.

In this form, we refer to a model integrated over the edges of triangles as edge models. Models integrated
over the volume of each triangle vertex are referred to as node models. Element edge models are a special
case where variables at other nodes off the edge may cause the flux to change.

There are a default set of models created in each region upon initialization of a device, and are typically
based on the geometrical attributes. These are described in the following sections. Models required for
describing the device behavior are created using the equation parser described in SYMDIFF (page 45). For
special situations, custom matrix assembly is also available and is discussed in Custom matrix assembly
(page 28).

17

DEVSIM Manual, Release 1.0.0-rc1

NodeVolume

EdgeCouple

Fig. 4.1: Mesh elements in 2D.

18 Chapter 4. Equation and Models

DEVSIM Manual, Release 1.0.0-rc1

EdgeLength

EdgeCouple

n1n0

Fig. 4.2: Edge model constructs in 2D.

4.1. Overview 19

DEVSIM Manual, Release 1.0.0-rc1

ElementNodeVolume

en1

en2

en0

EdgeLength

ElementEdgeCouple

Fig. 4.3: Element edge model constructs in 2D.

20 Chapter 4. Equation and Models

DEVSIM Manual, Release 1.0.0-rc1

4.2 Bulk models

4.2.1 Node models

Node models may be specified in terms of other node models, mathematical functions, and parameters on
the device. The simplest model is the node solution, and it represents the solution variables being solved for.
Node models automatically created for a region are listed in Table 4.1.

In this example, we present an implementation of Shockley Read Hall recombination [MKC02].

USRH="-ElectronCharge*(Electrons*Holes - n_i^2)/(taup*(Electrons + n1) \
+ taun*(Holes + p1))")

dUSRHdn="simplify(diff(%s, Electrons))" % USRH
dUSRHdp="simplify(diff(%s, Holes))" % USRH
devsim.node_model(device='MyDevice', region='MyRegion',

name="USRH", equation=USRH)
devsim.node_model(device='MyDevice', region='MyRegion',

name="USRH:Electrons", equation=dUSRHdn)
devsim.node_model(device='MyDevice', region='MyRegion',

name="USRH:Holes", equation=dUSRHdp)

The first model specified, USRH, is the recombination model itself. The derivatives with respect to elec-
trons and holes are USRH:Electrons and USRH:Holes, respectively. In this particular example
Electrons and Holes have already been defined as solution variables. The remaining variables in the
equation have already been specified as parameters.

The diff function tells the equation parser to take the derivative of the original expression, with respect
to the variable specified as the second argument. During equation assembly, these derivatives are required
in order to converge upon a solution. The simplify function tells the expression parser to attempt to
simplify the expression as much as possible.

Table 4.1: Node models defined on each region of a device.
Node Model Description
AtContactNode Evaluates to 1 if node is a contact node, otherwise 0
NodeVolume The volume of the node. Used for volume integration of node models

on nodes in mesh
NSurfaceNormal_x The surface normal to points on the interface or contact (2D and 3D)
NSurfaceNormal_y The surface normal to points on the interface or contact (2D and 3D)
NSurfaceNormal_z The surface normal to points on the interface or contact (3D)
SurfaceArea The surface area of a node on interface nodes, otherwise 0
ContactSurfaceArea The surface area of a node on contact nodes, otherwise 0
coordinate_index Coordinate index of the node on the device
node_index Index of the node in the region
x x position of the node
y y position of the node
z z position of the node

4.2. Bulk models 21

DEVSIM Manual, Release 1.0.0-rc1

4.2.2 Edge models

Edge models may be specified in terms of other edge models, mathematical functions, and parameters on the
device. In addition, edge models may reference node models defined on the ends of the edge. As depicted
in Fig. 4.2, edge models are with respect to the two nodes on the edge, n0 and n1.

For example, to calculate the electric field on the edges in the region, the following scheme is employed:

devsim.edge_model(device="device", region="region", name="ElectricField",
equation="(Potential@n0 - Potential@n1)*EdgeInverseLength")

devsim.edge_model(device="device", region="region",
name="ElectricField:Potential@n0", equation="EdgeInverseLength")

devsim.edge_model(device="device", region="region",
name="ElectricField:Potential@n1", equation="-EdgeInverseLength")

In this example, EdgeInverseLength is a built-in model for the inverse length between nodes on an
edge. Potential@n0 and Potential@n1 is the Potential node solution on the nodes at the end of
the edge. These edge quantities are created using the devsim.edge_from_node_model() (page 77).
In addition, the devsim.edge_average_model() (page 77) can be used to create edge models in
terms of node model quantities.

Edge models automatically created for a region are listed in Table 4.2.

Table 4.2: Edge models defined on each region of a device.
Edge Model Description
EdgeCouple The length of the perpendicular bisector of an element edge. Used to

perform surface integration of edge models on edges in mesh.
EdgeInverseLength Inverse of the EdgeLength.
EdgeLength The distance between the two nodes of an edge
edge_index Index of the edge on the region
unitx x component of the unit vector along an edge
unity y component of the unit vector along an edge (2D and 3D)
unitz z component of the unit vector along an edge (3D only)

4.2.3 Element edge models

Element edge models are used when the edge quantitites cannot be specified entirely in terms of the quanti-
ties on both nodes of the edge, such as when the carrier mobility is dependent on the normal electric field.
In 2D, element edge models are evaluated on each triangle edge. As depicted in Fig. 4.3, edge models are
with respect to the three nodes on each triangle edge and are denoted as en0, en1, and en2. Derivatives
are with respect to each node on the triangle.

In 3D, element edge models are evaluated on each tetrahedron edge. Derivatives are with respect to the
nodes on both triangles on the tetrahedron edge. Element edge models automatically created for a region
are listed in Table 4.3.

As an alternative to treating integrating the element edge model with respect to ElementEdgeCouple,
the integration may be performed with respect to ElementNodeVolume. See devsim.equation()
(page 62) for more information.

22 Chapter 4. Equation and Models

DEVSIM Manual, Release 1.0.0-rc1

Table 4.3: Element edge models defined on each region of a de-
vice.

Element Edge Model Description
ElementEdgeCouple The length of the perpendicular bisector of an edge. Used to perform

surface integration of element edge model on element edge in the
mesh.

ElementNodeVolume The node volume at either end of each element edge.

4.2.4 Model derivatives

To converge upon the solution, derivatives are required with respect to each of the solution variables in the
system. DEVSIM will look for the required derivatives. For a model model, the derivatives with respect to
solution variable variable are presented in Table 4.4.

Table 4.4: Required derivatives for equation assembly. model is
the name of the model being evaluated, and variable is one of
the solution variables being solved at each node.

Model Type Derivatives Required
Node Model model:variable
Edge Model model:variable@n0, model:variable@n1
Element Edge Model model:variable@en0, model:variable@en1,

model:variable@en2, model:variable@en3 (3D)

4.2.5 Conversions between model types

The devsim.edge_from_node_model() (page 77) is used to create edge models referring to the
nodes connecting the edge. For example, the edge models Potential@n0 and Potential@n1 refer to
the Potential node model on each end of the edge.

The devsim.edge_average_model() (page 77) creates an edge model which is either the arithmetic
mean, geometric mean, gradient, or negative of the gradient of the node model on each edge.

When an edge model is referred to in an element edge model expression, the edge values are implic-
ity converted into element edge values during expression evaluation. In addition, derivatives of the
edge model with respect to the nodes of an element edge are required, they are converted as well. For
example, edgemodel:variable@n0 and edgemodel:variable@n1 are implicitly converted to
edgemodel:variable@en0 and edgemodel:variable@en1, respectively.

The devsim.element_from_edge_model() (page 78) is used to create directional components of
an edge model over an entire element. The derivative option is used with this command to create
the derivatives with respect to a specific node model. The devsim.element_from_node_model()
(page 79) is used to create element edge models referring to each node on the element of the element edge.

4.2. Bulk models 23

DEVSIM Manual, Release 1.0.0-rc1

4.2.6 Equation assembly

Bulk equations are specified in terms of the node, edge, and element edge models using the devsim.
equation() (page 62). Node models are integrated with respect to the node volume. Edge models are
integrated with the perpendicular bisectors along the edge onto the nodes on either end.

Element edge models are treated as flux terms and are integrated with respect to ElementEdgeCouple
using the element_model option. Alternatively, they may be treated as source terms and are integrated
with respect to ElementNodeVolume using the volume_model option.

In this example, we are specifying the Potential Equation in the region to consist of a flux term named
PotentialEdgeFlux and to not have any node volume terms.

devsim.equation(device="device", region="region", name="PotentialEquation",
variable_name="Potential", edge_model="PotentialEdgeFlux",
variable_update="log_damp")

In addition, the solution variable coupled with this equation is Potential and it will be updated using
logarithmic damping.

Table 4.5: Required derivatives for interface equation assem-
bly. The node model name nodemodel and its derivatives
nodemodel:variable are suffixed with @r0 and @r1 to de-
note which region on the interface is being referred to.

Model Type Model Name Derivatives Required
Node Model (region 0) nodemodel@r0 nodemodel:variable@r0
Node Model (region 1) nodemodel@r1 nodemodel:variable@r1
Interface Node Model inodemodel inodemodel:variable@r0,

inodemodel:variable@r1

4.3 Interface

4.3.1 Interface models

Fig. 4.4 depicts an interface in DEVSIM. It is a collection of overlapping nodes existing in two regions, r0
and r1.

Interface models are node models specific to the interface being considered. They are unique from bulk node
models, in the sense that they may refer to node models on both sides of the interface. They are specified
using the devsim.interface_model() (page 81). Interface models may refer to node models or
parameters on either side of the interface using the syntax nodemodel@r0 and nodemodel@r1 to refer
to the node model in the first and second regions of the interface. The naming convention for node models,
interface node models, and their derivatives are shown in Table 4.5.

devsim.interface_model(device="device", interface="interface",
name="continuousPotential", equation="Potential@r0-Potential@r1")

24 Chapter 4. Equation and Models

DEVSIM Manual, Release 1.0.0-rc1

r1

r0

SurfaceArea

Fig. 4.4: Interface constructs in 2D. Interface node pairs are located at each ∙. The SurfaceArea model
is used to integrate flux term models.

4.3. Interface 25

DEVSIM Manual, Release 1.0.0-rc1

4.3.2 Interface model derivatives

For a given interface model, model, the derivatives with respect to the variable variable in the regions
are

• model:variable@r0

• model:variable@r1

devsim.interface_model(device="device", interface="interface",
name="continuousPotential:Potential@r0", equation="1")

devsim.interface_model(device="device", interface="interface",
name="continuousPotential:Potential@r1", equation="-1")

4.3.3 Interface equation assembly

There are three types of interface equations considered in DEVSIM. They are both activated using the
devsim.interface_equation() (page 64).

In the first form, continuous, the equations for the nodes on both sides of the interface are integrated
with respect to their volumes and added into the same equation. An additional equation is then specified to
relate the variables on both sides. In this example, continuity in the potential solution across the interface is
enforced, using the continuousPotential model defined in the previous section.

devsim.interface_equation(device="device", interface="interface", name=
→˓"PotentialEquation",

variable_name="Potential", interface_model=
→˓"continuousPotential",

type="continuous")

In the second form, fluxterm, a flux term is integrated over the surface area of the interface and added to
the first region, and subtracted from the second.

In the third form, hybrid, equations for nodes on both sides of the interface are added into the equation
for the node in the first region. The equation for the node on the second interface is integrated in the second
region, and the fluxterm is subracted in the second region.

4.4 Contact

4.4.1 Contact models

Fig. 4.5 depicts how a contact is treated in a simulation. It is a collection of nodes on a region. During
assembly, the specified models form an equation, which replaces the equation applied to these nodes for a
bulk node.

Contact models are equivalent to node and edge models, and are specified using the devsim.
contact_node_model() (page 74) and the devsim.contact_edge_model() (page 74), respec-
tively. The key difference is that the models are only evaluated on the contact nodes for the contact specified.

26 Chapter 4. Equation and Models

DEVSIM Manual, Release 1.0.0-rc1

circuit_node

Fig. 4.5: Contact constructs in 2D.

4.4.2 Contact model derivatives

The derivatives are equivalent to the discussion in Model derivatives (page 23). If external circuit boundary
conditions are being used, the model model derivative with respect to the circuit node node name should
be specified as model:node.

4.4.3 Contact equation assembly

The devsim.contact_equation() (page 60) is used to specify the boundary conditions on the con-
tact nodes. The models specified replace the models specified for bulk equations of the same name. For
example, the node model specified for the contact equation is assembled on the contact nodes, instead of the
node model specified for the bulk equation. Contact equation models not specified are not assembled, even
if the model exists on the bulk equation for the region attached to the contact.

As an example

devsim.contact_equation(device="device", contact="contact", name=
→˓"PotentialEquation",
variable_name="Potential", node_model="contact_bc",
edge_charge_model="DField")

Current models refer to the instantaneous current flowing into the device. Charge models refer to the instan-
taneous charge at the contact.

During a transient, small-signal or ac simulation, the time derivative is taken so that the net current into a

4.4. Contact 27

DEVSIM Manual, Release 1.0.0-rc1

circuit node is

𝐼 (𝑡) = 𝑖 (𝑡) +
𝜕𝑞 (𝑡)

𝜕𝑡

where 𝑖 is the integrated current and 𝑞 is the integrated charge.

4.5 Custom matrix assembly

The devsim.custom_equation() (page 61) command is used to register callbacks to be called during
matrix and right hand side assembly. The Python procedure must expect to receive two arguments and
return two lists. For example a procedure named myassemble registered with

devsim.custom_equation(name="test1", procedure="myassemble")

must expect to receive two arguments

def myassemble(what, timemode):
.
.
.
return [rcv, rv]

where what may be passed as one of

MATRIXONLY
RHS
MATRIXANDRHS

and timemode may be passed as one of

DC
TIME

When timemode is DC, the time-independent part of the equation is returned. When timemode is TIME,
the time-derivative part of the equation is returned. The simulator will scale the time-derivative terms with
the proper frequency or time scale.

The return value from the procedure must return two lists of the form

[1 1 1.0 2 2 1.0 1 2 -1.0 2 1 -1.0 2 2 1.0] [1 1.0 2 1.0 2 -1.0]

where the length of the first list is divisible by 3 and contains the row, column, and value to be assembled
into the matrix. The second list is divisible by 2 and contains the right-hand side entries. Either list may be
empty.

The devsim.get_circuit_equation_number() (page 60) may be used to get the equation num-
bers corresponding to circuit node names. The devsim.get_equation_numbers() (page 63) may
be used to find the equation number corresponding to each node index in a region.

The matrix and right hand side entries should be scaled by the NodeVolume if they are assembled into
locations in a device region. Row permutations, required for contact and interface boundary conditions, are
automatically applied to the row numbers returned by the Python procedure.

28 Chapter 4. Equation and Models

DEVSIM Manual, Release 1.0.0-rc1

4.6 Cylindrical Coordinate Systems

In 2D, models representing the edge couples, surface areas and node volumes may be generated using the
following commands:

• devsim.cylindrical_edge_couple() (page 74)

• devsim.cylindrical_node_volume() (page 75)

• devsim.cylindrical_surface_area() (page 75)

In order to change the integration from the default models to cylindrical models, the following parameters
may be set

set_parameter(name="node_volume_model",
value="CylindricalNodeVolume")

set_parameter(name="edge_couple_model",
value="CylindricalEdgeCouple")

set_parameter(name="edge_node0_volume_model",
value="CylindricalEdgeNodeVolume@n0")

set_parameter(name="edge_node1_volume_model",
value="CylindricalEdgeNodeVolume@n1")

set_parameter(name="element_edge_couple_model",
value="ElementCylindricalEdgeCouple")

set_parameter(name="element_node0_volume_model",
value="ElementCylindricalNodeVolume@en0")

set_parameter(name="element_node1_volume_model",
value="ElementCylindricalNodeVolume@en1")

4.6. Cylindrical Coordinate Systems 29

DEVSIM Manual, Release 1.0.0-rc1

30 Chapter 4. Equation and Models

Chapter 5

Model Parameters

Parameters can be set using the commands in Material Commands (page 65). There are two complementary
formalisms for doing this.

5.1 Parameters

Parameters are set globally, on devices, or on regions of a device. The models on each device region are
automatically updated whenever parameters change.

devsim.set_parameter(device="device", region="region",
name="ThermalVoltage", value=0.0259)

5.2 Material database entries

Alternatively, parameters may be set based on material types. A database file is used for getting values on
the regions of the device.

devsim.create_db(filename="foodb")
devsim.add_db_entry(material="global", parameter="q", value=1.60217646e-19,

unit="coul", description="Electron Charge")
devsim.add_db_entry(material="Si", parameter="one",

value=1, unit="", description="")
devsim.close_db

When a database entry is not available for a specific material, the parameter will be looked up on the
global material entry.

5.3 Discussion

Both parameters and material database entries may be used in model expressions. Parameters have prece-
dence in this situation. If a parameter is not found, then DEVSIM will also look for a circuit node by the

31

DEVSIM Manual, Release 1.0.0-rc1

name used in the model expression.

32 Chapter 5. Model Parameters

Chapter 6

Circuits

6.1 Circuit elements

Circuit elements are manipulated using the commands in Circuit Commands (page 59). Using the devsim.
circuit_element() (page 59) to add a circuit element will implicitly create the nodes being references.

A simple resistor divider with a voltage source would be specified as:

devsim.circuit_element(name="V1", n1="1", n2="0", value=1.0)
devsim.circuit_element(name="R1", n1="1", n2="2", value=5.0)
devsim.circuit_element(name="R2", n1="2", n2="0", value=5.0)

Circuit nodes are created automatically when referred to by these commands. Voltage sources create an
additional circuit node of the form V1.I to account for the current flowing through it.

6.2 Connecting devices

For devices to contribute current to an external circuit, the devsim.contact_equation() (page 60)
should use the circuitnode option to specify the circuit node in which to integrate its current. This
option does not create a node in the circuit. No circuit boundary condition for the contact equation will
exist if the circuit node does not actually exist in the circuit. The devsim.circuit_node_alias()
(page 60) may be used to associate the name specified on the contact equation to an existing circuit node on
the circuit.

The circuit node names may be used in any model expression on the regions and interfaces. However, the
simulator will only take derivatives with respect to circuit nodes names on models used to compose the
contact equation.

33

DEVSIM Manual, Release 1.0.0-rc1

34 Chapter 6. Circuits

Chapter 7

Meshing

7.1 1D mesher

DEVSIM has an internal 1D mesher and the proper sequence of commands follow in this example.

devsim.create_1d_mesh(mesh="cap")
devsim.add_1d_mesh_line(mesh="cap", pos=0, ps=0.1, tag="top")
devsim.add_1d_mesh_line(mesh="cap", pos=0.5, ps=0.1, tag="mid")
devsim.add_1d_mesh_line(mesh="cap", pos=1, ps=0.1, tag="bot")
devsim.add_1d_contact(mesh="cap", name="top", tag="top", material="metal")
devsim.add_1d_contact(mesh="cap", name="bot", tag="bot", material="metal")
devsim.add_1d_interface(mesh="cap", name="MySiOx", tag="mid")
devsim.add_1d_region(mesh="cap", material="Si", region="MySiRegion",

tag1="top", tag2="mid")
devsim.add_1d_region(mesh="cap", material="Ox", region="MyOxRegion",

tag1="mid", tag2="bot")
devsim.finalize_mesh(mesh="cap")
devsim.create_device(mesh="cap", device="device")

The devsim.create_1d_mesh() (page 72) is first used to initialize the specification of a new mesh by
the name specified with the command option. The devsim.add_1d_mesh_line() (page 68) is used
to specify the end points of the 1D structure, as well as the location of points where the spacing changes.
The command is used to create reference labels used for specifying the contacts, interfaces and regions.

The devsim.add_1d_contact() (page 68), devsim.add_1d_interface() (page 68) and
devsim.add_1d_region() (page 69) are used to specify the contacts, interfaces and regions for the
device.

Once the meshing commands have been completed, the devsim.finalize_mesh() (page 73) is called
to create a mesh structure and then devsim.create_device() (page 72) is used to create a device
using the mesh.

35

DEVSIM Manual, Release 1.0.0-rc1

7.2 2D mesher

Similar to the 1D mesher, the 2D mesher uses a sequence of non-terminating mesh lines are specified in both
the x and y directions to specify a mesh structure. As opposed to using tags, the regions are specified using
devsim.add_2d_region() (page 70) as box coordinates on the mesh coordinates. The contacts and
interfaces are specified using boxes, however it is best to ensure the the interfaces and contacts encompass
only one line of points.

devsim.create_2d_mesh(mesh="cap")
devsim.add_2d_mesh_line(mesh="cap", dir="y", pos=-0.001, ps=0.001)
devsim.add_2d_mesh_line(mesh="cap", dir="x", pos=xmin, ps=0.1)
devsim.add_2d_mesh_line(mesh="cap", dir="x", pos=xmax, ps=0.1)
devsim.add_2d_mesh_line(mesh="cap", dir="y", pos=ymin, ps=0.1)
devsim.add_2d_mesh_line(mesh="cap", dir="y", pos=ymax, ps=0.1)
devsim.add_2d_mesh_line(mesh="cap", dir="y", pos=+1.001, ps=0.001)
devsim.add_2d_region(mesh="cap", material="gas", region="gas1", yl=-.001,
→˓yh=0.0)
devsim.add_2d_region(mesh="cap", material="gas", region="gas2", yl=1.0, yh=1.
→˓001)
devsim.add_2d_region(mesh="cap", material="Oxide", region="r0", xl=xmin,
→˓xh=xmax,
yl=ymid1, yh=ymin)

devsim.add_2d_region(mesh="cap", material="Silicon", region="r1", xl=xmin,
→˓xh=xmax,
yl=ymid2, yh=ymid1)

devsim.add_2d_region(mesh="cap", material="Silicon", region="r2", xl=xmin,
→˓xh=xmax,
yl=ymid2, yh=ymax)

devsim.add_2d_interface(mesh="cap", name="i0", region0="r0", region1="r1")
devsim.add_2d_interface(mesh="cap", name="i1", region0="r1", region1="r2",

xl=0, xh=1, yl=ymid2, yh=ymid2, bloat=1.0e-10)
devsim.add_2d_contact(mesh="cap", name="top", region="r0", yl=ymin, yh=ymin,

bloat=1.0e-10, material="metal")
devsim.add_2d_contact(mesh="cap", name="bot", region="r2", yl=ymax, yh=ymax,

bloat=1.0e-10, material="metal")
devsim.finalize_mesh(mesh="cap")
devsim.create_device(mesh="cap", device="device")

In the current implementation of the software, it is necessary to create a region on both sides of the contact in
order to create a contact using devsim.add_2d_contact() (page 69) or an interface using devsim.
add_2d_interface() (page 69).

Once the meshing commands have been completed, the devsim.finalize_mesh() (page 73) is called
to create a mesh structure and then devsim.create_device() (page 72) is used to create a device
using the mesh.

36 Chapter 7. Meshing

DEVSIM Manual, Release 1.0.0-rc1

7.3 Using an external mesher

DEVSIM supports reading meshes from Genius Device Simulator and Gmsh. These meshes may
only contain points, lines, triangles, and tetrahedra. Hybrid meshes or uniform meshes containing other
elements are not supported at this time.

7.3.1 Genius

Meshes from the Genius Device Simulator software (see Genius (page 55)) can be imported using
the CGNS format. In this example, devsim.create_genius_mesh() (page 72) returns region and
boundary information which can be used to setup the device.

mesh_name = "nmos_iv"
result = create_genius_mesh(file="nmos_iv.cgns", mesh=mesh_name)

contacts = {}
for region_name, region_info in result['mesh_info']['regions'].iteritems():

add_genius_region(mesh=mesh_name, genius_name=region_name,
region=region_name, material=region_info['material'])

for boundary, is_electrode in region_info['boundary_info'].iteritems():
if is_electrode:

if boundary in contacts:
contacts[boundary].append(region_name)

else:
contacts[boundary] = [region_name,]

for contact, regions in contacts.iteritems():
if len(regions) == 1:

add_genius_contact(mesh=mesh_name, genius_name=contact, name=contact,
region=regions[0], material='metal')

else:
for region in regions:
add_genius_contact(mesh=mesh_name, genius_name=contact,

name=contact+'@'+region, region=region, material='metal')

for boundary_name, regions in result['mesh_info']['boundaries'].iteritems():
if (len(regions) == 2):

add_genius_interface(mesh=mesh_name, genius_name=boundary_name,
name=boundary_name, region0=regions[0], region1=regions[1])

finalize_mesh(mesh=mesh_name)
create_device(mesh=mesh_name, device=mesh_name)

Example locations are available on genius (page 87).

7.3. Using an external mesher 37

DEVSIM Manual, Release 1.0.0-rc1

7.3.2 Gmsh

The Gmsh meshing software (see Gmsh (page 55)) can be used to create a 1D, 2D, or 3D mesh suitable
for use in DEVSIM. When creating the mesh file using the software, use physical group names to map the
difference entities in the resulting mesh file to a group name. In this example, a MOS structure is read in:

devsim.create_gmsh_mesh(file="gmsh_mos2d.msh", mesh="mos2d")
devsim.add_gmsh_region(mesh="mos2d" gmsh_name="bulk", region="bulk",

material="Silicon")
devsim.add_gmsh_region(mesh="mos2d" gmsh_name="oxide", region="oxide",

material="Silicon")
devsim.add_gmsh_region(mesh="mos2d" gmsh_name="gate", region="gate",

material="Silicon")
devsim.add_gmsh_contact(mesh="mos2d" gmsh_name="drain_contact", region="bulk",

name="drain", material="metal")
devsim.add_gmsh_contact(mesh="mos2d" gmsh_name="source_contact", region="bulk
→˓",

name="source", material="metal")
devsim.add_gmsh_contact(mesh="mos2d" gmsh_name="body_contact", region="bulk",

name="body", material="metal")
devsim.add_gmsh_contact(mesh="mos2d" gmsh_name="gate_contact", region="gate",

name="gate", material="metal")
devsim.add_gmsh_interface(mesh="mos2d" gmsh_name="gate_oxide_interface",

region0="gate", region1="oxide", name="gate_oxide")
devsim.add_gmsh_interface(mesh="mos2d" gmsh_name="bulk_oxide_interface",

region0="bulk", region1="oxide", name="bulk_oxide")
devsim.finalize_mesh(mesh="mos2d")
devsim.create_device(mesh="mos2d", device="mos2d")

Once the meshing commands have been completed, the devsim.finalize_mesh() (page 73) is called
to create a mesh structure and then devsim.create_device() (page 72) is used to create a device
using the mesh.

7.3.3 Custom mesh loading using scripting

It is also possible to arbitrarily load a mesh from a Python using the devsim.create_gmsh_mesh()
(page 73). This is explained in the Notes section of the command.

7.4 Loading and saving results

The devsim.write_devices() (page 74) is used to create an ASCII file suitable for saving data for
restarting the simulation later. The devsim format encodes structural information, as well as the com-
mands necessary for generating the models and equations used in the simulation. The devsim_data
format is used for storing numerical information for use in other programs for analysis. The devsim.
load_devices() (page 73) is then used to reload the device data for restarting the simulation.

38 Chapter 7. Meshing

Chapter 8

Solver

8.1 Solver

DEVSIM uses Newton methods to solve the system of PDE’s. All of the analyses are performed using the
devsim.solve() (page 85).

8.2 DC analysis

A DC analysis is performed using the devsim.solve() (page 85).

solve(type="dc", absolute_error=1.0e10, relative_error=1e-7 maximum_
→˓iterations=30)

8.3 AC analysis

An AC analysis is performed using the devsim.solve() (page 85). A circuit voltage source is required
to set the AC source.

8.4 Noise/Sensitivity analysis

An noise analysis is performed using the devsim.solve() (page 85) command. A circuit node is spec-
ified in order to find its sensitivity to changes in the bulk quantities of each device. If the circuit node is
named V1.I. A noise simulation is performed using:

solve(type="noise", frequency=1e5, output_node="V1.I")

Noise and sensitivity analysis is performed using the devsim.solve() (page 85). If the equation begin
solved is PotentialEquation, the names of the scalar impedance field is then:

• V1.I_PotentialEquation_real

39

DEVSIM Manual, Release 1.0.0-rc1

• V1.I_PotentialEquation_imag

and the vector impedance fields evaluated on the nodes are

• V1.I_PotentialEquation_real_gradx

• V1.I_PotentialEquation_imag_gradx

• V1.I_PotentialEquation_real_grady (2D and 3D)

• V1.I_PotentialEquation_imag_grady (2D and 3D)

• V1.I_PotentialEquation_real_gradz (3D only)

• V1.I_PotentialEquation_imag_gradz (3D only)

8.5 Transient analysis

Transient analysis is performed using the devsim.solve() (page 85). DEVSIM supports time-
integration of the device PDE’s. The three methods are supported are:

• BDF1

• TRBDF

• BDF2

40 Chapter 8. Solver

Chapter 9

User Interface

9.1 Starting DEVSIM

Refer to Installation (page 53) for instructions on how to install DEVSIM. Once installed, DEVSIM may be
invoked using the following command

By first setting the PYTHONPATH variable to the lib directory in the DEVSIM distribution, devsim is
loaded by using

import devsim

from Python.

Many of the examples in the distribution rely on the python_packages module, which is available by
using:

import devsim.python_packages

The default version of Python for use in scripts is 3.7, however scripts written for earlier versions of
Python 3 should work. Python 2.7 is deprecated for future development.

9.2 Python Language

9.2.1 Introduction

Python is the scripting language employed as the text interface to DEVSIM. Documentation and tutori-
als for the language are available from [pyt]. A paper discussing the general benefits of using scripting
languages may be found in [Ous98].

9.2.2 DEVSIM commands

All of commands are in the devsim namespace. In order to invoke a command, the command should be
prefixed with devsim., or the following may be placed at the beginning of the script:

41

DEVSIM Manual, Release 1.0.0-rc1

from devsim import *

For details concerning error handling, please see Error handling (page 42).

9.2.3 Advanced usage

In this manual, more advanced usage of the Python language may be used. The reader is encouraged to use
a suitable reference to clarify the proper use of the scripting language constructs, such as control structures.

9.2.4 Unicode Support

Internally, DEVSIM uses UTF-8 encoding, and expects model equations and saved mesh files to be written
using this encoding. Users are encouraged to use the standard ASCII character set if they do not wish to use
this feature. Python 3 interpreters handle UTF-8 encoding well. For the deprecated Python 2 interpreter, it
is necessary to put the following line at the beginning of the python script.

-*- coding: utf-8 -*-

On some systems, such as Microsoft Windows, it may be necessary to set the following environment
variable before running a script containing UTF-8 characters.

SET PYTHONIOENCODING=utf-8

Care should be taken when using UTF-8 characters in names for visualization using the tools in Visualization
(page 51), as this character set may not be supported.

9.3 Error handling

9.3.1 Python errors

When a syntax error occurs in a Python script an exception may be thrown. If it is uncaught, then DEVSIM
will terminate. More details may be found in an appropriate reference. An exception that is thrown by
DEVSIM is of the type devsim.error. It may be caught.

9.3.2 Fatal errors

When DEVSIM enters a state in which it may not recover. The interpreter should throw a Python exception
with a message DEVSIM FATAL. At this point DEVSIM may enter an inconsistent state, so it is suggested
not to attempt to continue script execution if this occurs.

In rare situations, the program may behave in an erratic manner, print a message, such as UNEXPECTED or
terminate abruptly. Please report this using the contact information in Contact (page 1).

42 Chapter 9. User Interface

DEVSIM Manual, Release 1.0.0-rc1

9.3.3 Floating point exceptions

During model evaluation, DEVSIM will attempt to detect floating point issues and return an error with some
diagnostic information printed to the screen, such as the symbolic expression being evaluated. Floating point
errors may be characterized as invalid, division by zero, and numerical overflow. This is considered to be a
fatal error.

9.3.4 Solver errors

When using the devsim.solve() (page 85), the solver may not converge and a message will be printed
and an exception may be thrown. The solution will be restored to its previous value before the simulation
began. This exception may be caught and the bias conditions may be changed so the simulation may be
continued. For example:

try:
solve(type="dc", absolute_error=abs_error,

relative_error=rel_error, maximum_iterations=max_iter)
except devsim.error as msg:

if msg[0].find("Convergence failure") != 0:
raise

put code to modify step here.

9.3.5 Verbosity

The set_parameter() may be used to set the verbosity globally, per device, or per region. Setting the
debug_level parameter to info results in the default level of information to the screen. Setting this
option to verbose or any other name results in more information to the screen which may be useful for
debugging.

The following example sets the default level of debugging for the entire simulation, except that the gate
region will have additional debugging information.

devsim.set_parameter(name="debug_level", value="info")
devsim.set_parameter(device="device" region="gate",

name="debug_level", value="verbose")

9.3.6 Parallelization

Routines for the evaluating of models have been parallelized. In order to select the number of threads to use

devsim.set_parameter(name="threads_available", value=2)

where the value specified is the number of threads to be used. By default, DEVSIM does not use threading.
For regions with a small number of elements, the time for switching threads is more than the time to evaluate
in a single thread. To set the minimum number of elements for a calculation, set the following parameter.

9.3. Error handling 43

DEVSIM Manual, Release 1.0.0-rc1

devsim.set_parameter(name="threads_task_size", value=1024)

The Intel Math Kernel Library is parallelized, the number of thread may be controlled by setting
the MKL_NUM_THREADS environment variable.

44 Chapter 9. User Interface

Chapter 10

SYMDIFF

10.1 Overview

SYMDIFF is a tool capable of evaluating derivatives of symbolic expressions. Using a natural syntax, it is
possible to manipulate symbolic equations in order to aid derivation of equations for a variety of applications.
It has been tailored for use within DEVSIM.

10.2 Syntax

10.2.1 Variables and numbers

Variables and numbers are the basic building blocks for expressions. A variable is defined as any sequence
of characters beginning with a letter and followed by letters, integer digits, and the _ character. Note that the
letters are case sensitive so that a and {A} are not the same variable. Any other characters are considered to
be either mathematical operators or invalid, even if there is no space between the character and the rest of
the variable name.

Examples of valid variable names are:

a, dog, var1, var_2

Numbers can be integer or floating point. Scientific notation is accepted as a valid syntax. For example:

1.0, 1.0e-2, 3.4E-4

45

DEVSIM Manual, Release 1.0.0-rc1

10.2.2 Basic expressions

Table 10.1: Basic expressions involving unary, binary, and logical
operators.

Expression Description
(exp1) Parenthesis for changing precedence

+exp1 Unary Plus
-exp1 Unary Minus
!exp1 Logical Not

exp1 ^ exp2 Exponentiation

exp1 * exp2 Multiplication
exp1 / exp2 Division

exp1 + exp2 Addition
exp1 - exp2 Subtraction

exp1 < exp2 Test Less
exp1 <= exp2 Test Less Equal
exp1 > exp2 Test Greater
exp1 >= exp2 Test Greater Equal

exp1 == exp2 Test Equality
exp1 != exp2 Test Inequality

exp1 && exp2 Logical And

exp1 || exp2 Logical Or

variable Independent Variable
number Integer or decimal number

In Table 10.1, the basic syntax for the language is presented. An expression may be composed of variables
and numbers tied together with mathematical operations. Order of operations is from bottom to top in order
of increasing precedence. Operators with the same level of precedence are contained within horizontal lines.

In the expression a + b * c, the multiplication will be performed before the addition. In order to over-
ride this precedence, parenthesis may be used. For example, in (a + b) * c, the addition operation is
performed before the multiplication.

The logical operators are based on non zero values being true and zero values being false. The test operators
are evaluate the numerical values and result in 0 for false and 1 for true.

It is important to note since values are based on double precision arithmetic, testing for equality
with values other than 0.0 may yield unexpected results.

46 Chapter 10. SYMDIFF

DEVSIM Manual, Release 1.0.0-rc1

10.2.3 Functions

Table 10.2: Predefined Functions.
Function Description
acosh(exp1) Inverse Hyperbolic Cosine
asinh(exp1) Inverse Hyperbolic Sine
atanh(exp1) Inverse Hyperbolic Tangent
B(exp1) Bernoulli Function
dBdx(exp1) derivative of Bernoulli function
derfcdx(exp1) derivative of complementary error function
derfdx(exp1) derivative error function
dFermidx(exp1) derivative of Fermi Integral
dInvFermidx(exp1) derivative of InvFermi Integral
dot2d(exp1x, exp1y, exp2x,
exp2y)

exp1x*exp2x+exp1y*exp2y

erfc(exp1) complementary error function
erf(exp1) error function
exp(exp1) exponent
Fermi(exp1) Fermi Integral
ifelse(test, exp1, exp2) if test is true, then evaluate exp1, otherwise exp2
if(test, exp) if test is true, then evaluate exp, otherwise 0
InvFermi(exp1) inverse of the Fermi Integral
log(exp1) natural log
max(exp1, exp2) maximum of the two arguments
min(exp1, exp2) minimum of the two arguments
pow(exp1, exp2) take exp1 to the power of exp2
sgn(exp1) sign function
step(exp1) unit step function
kahan3(exp1, exp2, exp3) Extended precision addition of arguments
kahan4(exp1, exp2, exp3, exp4) Extended precision addition of arguments
vec_max maximum of all the values over the entire region or in-

terface
vec_min minimum of all the values over the entire region or in-

terface
vec_sum sum of all the values over the entire region or interface

In Table 10.2 are the built in functions of SYMDIFF. Note that the pow function uses the , operator to sepa-
rate arguments. In addition an expression like pow(a,b+y) is equivalent to an expression like a^(b+y).
Both exp and log are provided since many derivative expressions can be expressed in terms of these two
functions. It is possible to nest expressions within functions and vice-versa.

10.2. Syntax 47

DEVSIM Manual, Release 1.0.0-rc1

10.2.4 Commands

Table 10.3: Commands.
Command Description
diff(obj1, var) Take derivative of obj1 with respect to variable var
expand(obj) Expand out all multiplications into a sum of products
help Print description of commands
scale(obj) Get constant factor
sign(obj) Get sign as 1 or -1
simplify(obj) Simplify as much as possible
subst(obj1,obj2,obj3) substitute obj3 for obj2 into obj1
unscaledval(obj) Get value without constant scaling
unsignedval(obj) Get unsigned value

Commands are shown in Table 10.3. While they appear to have the same form as functions, they are special
in the sense that they manipulate expressions and are never present in the expression which results. For
example, note the result of the following command

> diff(a*b, b)
a

10.2.5 User functions

Table 10.4: Commands for user functions.
Command Description
clear(name) Clears the name of a user function
declare(name(arg1, arg2,
...))

declare function name taking dummy arguments arg1, arg2,
. . . . Derivatives assumed to be 0

define(name(arg1, arg2,
...), obj1, obj2, ...)

declare function name taking arguments arg1, arg2, . . . hav-
ing corresponding derivatives obj1, obj2, . . .

Commands for specifying and manipulating user functions are listed in Table 10.4. They are used in order
to define new user function, as well as the derivatives of the functions with respect to the user variables. For
example, the following expression defines a function named f which takes one argument.

> define(f(x), 0.5*x)

The list after the function protoype is used to define the derivatives with respect to each of the independent
variables. Once defined, the function may be used in any other expression. In additions the any expression
can be used as an arguments. For example:

> diff(f(x*y),x)
((0.5 * (x * y)) * y)
> simplify((0.5 * (x * y)) * y)
(0.5 * x * (y^2))

48 Chapter 10. SYMDIFF

DEVSIM Manual, Release 1.0.0-rc1

The chain rule is applied to ensure that the derivative is correct. This can be expressed as

𝜕

𝜕𝑥
𝑓 (𝑢, 𝑣, . . .) =

𝜕𝑢

𝜕𝑥
· 𝜕
𝜕𝑢
𝑓 (𝑢, 𝑣, . . .) +

𝜕𝑣

𝜕𝑥
· 𝜕
𝜕𝑣
𝑓 (𝑢, 𝑣, . . .) + . . .

The declare command is required when the derivatives of two user functions are based on one another.
For example:

> declare(cos(x))
cos(x)
> define(sin(x),cos(x))
sin(x)
> define(cos(x),-sin(x))
cos(x)

When declared, a functions derivatives are set to 0, unless specified with a define command. It is now
possible to use these expressions as desired.

> diff(sin(cos(x)),x)
(cos(cos(x)) * (-sin(x)))
> simplify(cos(cos(x)) * (-sin(x)))
(-cos(cos(x)) * sin(x))

10.2.6 Macro assignment

The use of macro assignment allows the substitution of expressions into new expressions. Every time a
command is successfully used, the resulting expression is assigned to a special macro definition, $_.

In this example, the result of the each command is substituted into the next.

> a+b
(a + b)
> $_-b
((a + b) - b)
> simplify($_)
a

In addition to the default macro definition, it is possible to specify a variable identifier by using the $
character followed by an alphanumeric string beginning with a letter. In addition to letters and numbers, a _
character may be used as well. A macro which has not previously assigned will implicitly use 0 as its value.

This example demonstrates the use of macro assignment.

> $a1 = a + b
(a + b)
> $a2 = a - b
(a - b)
> simplify($a1+$a2)
(2 * a)

10.2. Syntax 49

DEVSIM Manual, Release 1.0.0-rc1

10.3 Invoking SYMDIFF from DEVSIM

10.3.1 Equation parser

The devsim.symdiff() (page 84) should be used when defining new functions to the parser. Since you
do not specify regions or interfaces, it considers all strings as being independent variables, as opposed to
models. Model Commands (page 74) presents commands which have the concepts of models. A ; should
be used to separate each statement.

This is a sample invocation from DEVSIM

% symdiff(expr="subst(dog * cat, dog, bear)")
(bear * cat)

10.3.2 Evaluating external math

The devsim.register_function() (page 83) is used to evaluate functions declared or defined
within SYMDIFF. A Python procedure may then be used taking the same number of arguments. For
example:

from math import cos
from math import sin
symdiff(expr="declare(sin(x))")
symdiff(expr="define(cos(x), -sin(x))")
symdiff(expr="define(sin(x), cos(x))")
register_function(name="cos", nargs=1)
register_function(name="sin", nargs=1)

The cos and sin function may then be used for model evaluation. For improved efficiency, it is possible
to create procedures written in C or C++ and load them into Python.

10.3.3 Models

When used withing the model commands discussed in Model Commands (page 74), DEVSIM has been
extended to recognize model names in the expressions. In this situation, the derivative of a model named,
model, with respect to another model, variable, is then model:variable.

During the element assembly process, DEVSIM evaluates all models of an equation together. While the
expressions in models and their derivatives are independent, the software uses a caching scheme to ensure
that redundant calculations are not performed. It is recommended, however, that users developing their own
models investigate creating intermediate models in order to improve their understanding of the equations
that they wish to be assembled.

50 Chapter 10. SYMDIFF

Chapter 11

Visualization

11.1 Introduction

DEVSIM is able to create files for visualization tools. Information about acquiring these tools are presented
in External Software Tools (page 55).

11.2 Using Tecplot

The devsim.write_devices() (page 74) is used to create an ASCII file suitable for use in Tecplot.
Edge quantities are interpolated onto the node positions in the resulting structure. Element edge quantities
are interpolated onto the centers of each triangle or tetrahedron in the mesh.

write_devices(file="mos_2d_dd.dat", type="tecplot")

11.3 Using Postmini

The devsim.write_devices() (page 74) is used to create an ASCII file suitable for use in
Postmini. Edge and element edge quantities are interpolated onto the node positions in the resulting
structure.

write_devices(file="mos_2d_dd.flps", type="floops")

11.4 Using Paraview

The devsim.write_devices() (page 74) is used to create an ASCII file suitable for use in
ParaView. Edge quantities are interpolated onto the node positions in the resulting structure. Element
edge quantities are interpolated onto the centers of each triangle or tetrahedron in the mesh.

51

DEVSIM Manual, Release 1.0.0-rc1

write_devices(file="mos_2d_dd", type="vtk")

One vtu file per device region will be created, as well as a vtm file which may be used to load all of the
device regions into ParaView.

11.5 Using VisIt

VisIt supports reading the Tecplot and ParaView formats. When using the vtk option on the
devsim.write_devices() (page 74), a file with a visit filename extension is created to load the
files created for ParaView.

11.6 DEVSIM

DEVSIM has several commands for getting information on the mesh. Those related to post processing are
described in Model Commands (page 74) and Geometry Commands (page 65).

See Loading and saving results (page 38) for information about loading and saving mesh information to a
file.

52 Chapter 11. Visualization

Chapter 12

Installation

12.1 Availability

Information about the open source version of DEVSIM is available from https://devsim.org. This site con-
tains up-to-date information about where to obtain compiled and source code versions of this software. It
also contains information about how to get support and participate in the development of this project.

12.2 Supported platforms

DEVSIM is compiled and tested on the platforms in Table 12.1. If you require a version on a different
software platform, please contact us.

Table 12.1: Current platforms for DEVSIM.
Platform Bits OS Version
Microsoft Windows 64 Microsoft Windows 7, Microsoft Windows 10

Linux 64 Ubuntu 14.04 (LTS)
Ubuntu 16.04 (LTS)
Red Hat Enterprise Linux 6 (Centos 6 compatible)

Apple Mac OS X 64 Mac OS X 10.13 (High Sierra)

12.3 Binary availability

Compiled packages for the the platforms in Table 12.1 are currently available from https://github.com/
devsim/devsim/releases. The prerequisites on each platform are described in the linux.txt, macos.
txt, and windows.txt.

53

https://devsim.org
https://github.com/devsim/devsim/releases
https://github.com/devsim/devsim/releases

DEVSIM Manual, Release 1.0.0-rc1

12.4 Source code availability

DEVSIM is also available in source code form from https://github.com/devsim/devsim.

12.5 Directory Structure

A DEVSIM directory is created with the following sub directories listed in Table 12.2.

Table 12.2: Directory structure for DEVSIM.
bin contains the devsim tcl binary
lib/devsim contains the devsim interpreter modules
lib/devsim/python_packages contains runtime libraries
doc contains product documentation
examples contains example scripts
testing contains additional examples used for testing

12.6 Running DEVSIM

See User Interface (page 41) for instructions on how to invoke DEVSIM.

54 Chapter 12. Installation

https://github.com/devsim/devsim

Chapter 13

Additional Information

13.1 DEVSIM License

Individual files are covered by the license terms contained in the comments at the top of the file. Contribu-
tions to this project are subject to the license terms of their authors. In general, DEVSIM is covered by the
Apache License, Version 2.0 [ApacheSoftwareFoundation]. Please see the NOTICE and LICENSE file for
more information.

13.2 SYMDIFF

SYMDIFF is available from https://symdiff.org and is covered by the terms of the Apache License, Version
2.0 [ApacheSoftwareFoundation].

13.3 External Software Tools

13.3.1 Genius

Genius is available in commercial and open source versions from http://www.cogenda.com.

13.3.2 Gmsh

Gmsh [GR09] is available from http://gmsh.info.

13.3.3 Paraview

ParaView is an open source visualization tool available at http://www.paraview.org.

55

https://symdiff.org
http://www.cogenda.com
http://gmsh.info
http://www.paraview.org

DEVSIM Manual, Release 1.0.0-rc1

13.3.4 Tecplot

Tecplot is a commercial visualization tool available from http://www.tecplot.com.

13.3.5 VisIt

VisIt is an open source visualization tool available from https://wci.llnl.gov/codes/visit/.

13.4 Library Availablilty

The following tools are used to build DEVSIM.

13.4.1 BLAS and LAPACK

These are the basic linear algebra routines used directly by DEVSIM and by SuperLU. Reference versions
are available from http://www.netlib.org. There are optimized versions available from other vendors.

13.4.2 CGNS

CGNS (CFD Generalized Notation System) is an open source library, which implements the storage format
used to read Genius Device Simulator meshes. It is available from http://www.cgns.org.

13.4.3 Python

A Python distribution is required for using DEVSIM and is distributed with many operating system. Ad-
ditional information is available at https://www.python.org. It should be stressed that binary packages must
be compatible with the Python distribution used by DEVSIM.

13.4.4 SQlite3

SQLite3 is an open source database engine used for the material database and is available from https:
//www.sqlite.org.

13.4.5 SuperLU

SuperLU [DEG+99] is used within DEVSIM and and is available from http://crd-legacy.lbl.gov/~xiaoye/
SuperLU:

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

56 Chapter 13. Additional Information

http://www.tecplot.com
https://wci.llnl.gov/codes/visit/
http://www.netlib.org
http://www.cgns.org
https://www.python.org
https://www.sqlite.org
https://www.sqlite.org
http://crd-legacy.lbl.gov/~xiaoye/SuperLU
http://crd-legacy.lbl.gov/~xiaoye/SuperLU

DEVSIM Manual, Release 1.0.0-rc1

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer. (2) Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. (3) Neither the name of Lawrence Berkeley Na-
tional Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

13.4.6 Tcl

Tcl is the original parser for DEVSIM and is superseded by Python. It is still used for some of the tests.
Tcl is available from http://www.tcl.tk.

13.4.7 zlib

zlib is an open source compression library available from https://zlib.net.

13.4. Library Availablilty 57

http://www.tcl.tk
https://zlib.net

DEVSIM Manual, Release 1.0.0-rc1

58 Chapter 13. Additional Information

Chapter 14

Command Reference

14.1 Circuit Commands

Commands are for adding circuit elements to the simulation.

devsim.add_circuit_node(name, value, variable_update)
Adds a circuit node for use in circuit or multi-device simulation

Parameters

name [str] Name of the circuit node being created

value [Float, optional] initial value (default 0.0)

variable_update [{‘default’, ‘log_damp’, ‘positive’}] update type for circuit variable

devsim.circuit_alter(name, param, value)
Alter the value of a circuit element parameter

Parameters

name [str] Name of the circuit node being created

param [str, optional] parameter being modified (default ‘value’)

value [Float] value for the parameter

devsim.circuit_element(name, value, n1, n2, acreal, acimag)
Adds a circuit element external to the devices

Parameters

name [str] Name of the circuit element being created. A prefix of ‘V’ is for volt-
age source, ‘I’ for current source, ‘R’ for resistor, ‘L’ for inductor, and ‘C’ for
capacitor.

value [Float, optional] value for the default parameter of the circuit element (default
0.0)

n1 [str] circuit node

59

DEVSIM Manual, Release 1.0.0-rc1

n2 [str] circuit node

acreal [Float, optional] real part of AC source for voltage (default 0.0)

acimag [Float, optional] imag part of AC source for voltage (default 0.0)

devsim.circuit_node_alias(node, alias)
Create an alias for a circuit node

Parameters

node [str] circuit node being aliased

alias [str] alias for the circuit node

devsim.get_circuit_equation_number(node)
Returns the row number correspond to circuit node in a region. Values are only valid when during the
course of a solve.

Parameters

node [str] circuit node

devsim.get_circuit_node_list()
Gets the list of the nodes in the circuit.

devsim.get_circuit_node_value(solution, node)
Gets the value of a circuit node for a given solution type.

Parameters

solution [str, optional] name of the solution. ‘dcop’ is the name for the DC solution
(default ‘dcop’)

node [str] circuit node of interest

devsim.get_circuit_solution_list()
Gets the list of available circuit solutions.

devsim.set_circuit_node_value(solution, node, value)
Sets the value of a circuit node for a given solution type.

Parameters

solution [str, optional] name of the solution. ‘dcop’ is the name for the DC solution
(default ‘dcop’)

node [str] circuit node of interest

value [Float, optional] new value (default 0.0)

14.2 Equation Commands

Commands for manipulating equations on contacts, interface, and regions

60 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

devsim.contact_equation(device, contact, name, variable_name, circuit_node,
edge_charge_model, edge_current_model, edge_model, ele-
ment_charge_model, element_current_model, element_model,
node_charge_model, node_current_model, node_model)

Create a contact equation on a device

Parameters

device [str] The selected device

contact [str] Contact on which to apply this command

name [str] Name of the contact equation being created

variable_name [str, optional] The variable name is used to determine the bulk equa-
tion we are replacing at this contact (deprecated)

circuit_node [str, optional] Name of the circuit we integrate the flux into

edge_charge_model [str, optional] Name of the edge model used to determine the
charge at this contact

edge_current_model [str, optional] Name of the edge model used to determine the
current flowing out of this contact

edge_model [str, optional] Name of the edge model being integrated at each edge at
this contact

element_charge_model [str, optional] Name of the element edge model used to de-
termine the charge at this contact

element_current_model [str, optional] Name of the element edge model used to de-
termine the current flowing out of this contact

element_model [str, optional] Name of the element edge model being integrated at
each edge at this contact

node_charge_model [str, optional] Name of the node model used to determine the
charge at this contact

node_current_model [str, optional] Name of the node model used to determine the
current flowing out of this contact

node_model [str, optional] Name of the node_model being integrated at each node at
this contact

devsim.custom_equation(name, procedure)
Custom equation assembly. See Custom matrix assembly (page 28) for a description of how the
function should be structured.

Parameters

name [str] Name of the custom equation being created

procedure [str] The procedure to be called

devsim.delete_contact_equation(device, contact, name)
This command deletes an equation from a contact.

14.2. Equation Commands 61

DEVSIM Manual, Release 1.0.0-rc1

Parameters

device [str] The selected device

contact [str] Contact on which to apply this command

name [str] Name of the contact equation being deleted

devsim.delete_equation(device, region, name)
This command deletes an equation from a region.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the equation being deleted

devsim.delete_interface_equation(device, interface, name)
This command deletes an equation from an interface.

Parameters

device [str] The selected device

interface [str] Interface on which to apply this command

name [str] Name of the interface equation being deleted

devsim.equation(device, region, name, variable_name, node_model, edge_model,
edge_volume_model, time_node_model, element_model, volume_model,
variable_update)

Specify an equation to solve on a device

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the equation being created

variable_name [str] Name of the node_solution being solved

node_model [str, optional] Name of the node_model being integrated at each node
in the device volume

edge_model [str, optional] Name of the edge model being integrated over each edge
in the device volume

edge_volume_model [str, optional] Name of the edge model being integrated over
the volume of each edge in the device volume

time_node_model [str, optional] Name of the time dependent node_model being in-
tegrated at each node in the device volume

element_model [str, optional] Name of the element_model being integrated over
each edge in the device volume

62 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

volume_model [str, optional] Name of the element_model being integrated over the
volume of each edge in the device volume

variable_update [str, optional] update type for circuit variable (default ‘default’)

Notes

The integration variables can be changed in 2D for cylindrical coordinate systems by setting the
appropriate parameters as described in Cylindrical Coordinate Systems (page 29).

In order to set the node volumes for integration of the edge_volume_model, it is possible to do
something like this:

devsim.get_contact_equation_command(device, contact, name)
This command gets the options used when creating this contact equation.

Parameters

device [str] The selected device

contact [str] Contact on which to apply this command

name [str] Name of the contact equation being command options returned

devsim.get_contact_equation_list(device, contact)
This command gets a list of equations on the specified contact.

Parameters

device [str] The selected device

contact [str] Contact on which to apply this command

devsim.get_equation_command(device, region, name)
This command gets the options used when creating this equation.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the equation being command options returned

devsim.get_equation_list(device, region)
This command gets a list of equations on the specified region.

Parameters

device [str] The selected device

region [str] The selected region

devsim.get_equation_numbers(device, region, equation, variable)
Returns a list of the equation numbers corresponding to each node in a region. Values are only valid
when during the course of a solve.

Parameters

14.2. Equation Commands 63

DEVSIM Manual, Release 1.0.0-rc1

device [str] The selected device

region [str] The selected region

equation [str, optional] Name of the equation

variable [str, optional] Name of the variable

devsim.get_interface_equation_command(device, interface, name)
This command gets the options used when creating this interface equation.

Parameters

device [str] The selected device

interface [str] Interface on which to apply this command

name [str] Name of the interface equation being command options returned

devsim.get_interface_equation_list(device, interface)
This command gets a list of equations on the specified interface.

Parameters

device [str] The selected device

interface [str] Interface on which to apply this command

devsim.interface_equation(device, interface, name, name0, name1, variable_name, inter-
face_model, type)

Command to specify an equation at an interface

Parameters

device [str] The selected device

interface [str] Interface on which to apply this command

name [str] Name of the interface equation being created

name0 [str, optional] Name of the equation coupling in region 0 being created (de-
fault ‘name’)

name1 [str, optional] Name of the equation coupling in region 1 being created (de-
fault ‘name’)

variable_name [str, optional] The variable name is used to determine the bulk equa-
tion we are coupling this interface to (deprecated)

interface_model [str] When specified, the bulk equations on both sides of the in-
terface are integrated together. This model is then used to specify how nodal
quantities on both sides of the interface are balanced

type [str] Specifies the type of boundary condition

64 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

14.3 Geometry Commands

Commands for getting information about the device structure.

devsim.get_contact_list(device)
Gets a list of contacts on a device.

Parameters

device [str] The selected device

devsim.get_device_list()
Gets a list of devices on the simulation.

devsim.get_element_node_list(device, region, contact, interface)
Gets a list of nodes for each element on a device, region, contact, or interface.

Parameters

device [str] The selected device

region [str] The selected region

contact [str, optional] If specified, gets the element nodes for the contact on the spec-
ified region

interface [str, optional] If specified, gets the element nodes for the interface on the
specified region

devsim.get_interface_list(device)
Gets a list of interfaces on a device.

Parameters

device [str] The selected device

devsim.get_region_list(device, contact, interface)
Gets a list of regions on a device, contact, or interface.

Parameters

device [str] The selected device

contact [str, optional] If specified, gets the name of the region belonging to this con-
tact on the device

interface [str, optional] If specified, gets the name of the regions belonging to this
interface on the device

14.4 Material Commands

Commands for manipulating parameters and material properties

devsim.add_db_entry(material, parameter, value, unit, description)
Adds an entry to the database

14.3. Geometry Commands 65

DEVSIM Manual, Release 1.0.0-rc1

Parameters

material [str] Material name requested. global refers to all regions whose material
does not have the parameter name specified

parameter [str] Parameter name

value [str] Value assigned for the parameter

unit [str] String describing the units for this parameter name

description [str] Description of the parameter for this material type.

Notes

The ds.save_db() command is used to commit these added entries permanently to the database.

devsim.close_db()
Closes the database so that its entries are no longer available

devsim.create_db(filename)
Create a database to store material properties

Parameters

filename [str] filename to create for the db

devsim.get_db_entry(material, parameter)
This command returns a list containing the value, unit, and description for the requested material db
entry

Parameters

material [str] Material name

parameter [str] Parameter name

devsim.get_dimension(device)
Get the dimension of the device

Parameters

device [str, optional] The selected device

devsim.get_material(device, region, contact)
Returns the material for the specified region

Parameters

device [str, optional] The selected device

region [str, optional] The selected region

contact [str, optional] Contact on which to apply this command

devsim.get_parameter(device, region, name)
Get a parameter on a region, device, or globally.

66 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

Parameters

device [str, optional] The selected device

region [str, optional] The selected region

name [str] Name of the parameter name being retrieved

Notes

Note that the device and region options are optional. If the region is not specified, the parameter
is retrieved for the entire device. If the device is not specified, the parameter is retrieved for all devices.
If the parameter is not found on the region, it is retrieved on the device. If it is not found on the device,
it is retrieved over all devices.

devsim.get_parameter_list(device, region)
Get list of parameter names on region, device, or globally

Parameters

device [str, optional] The selected device

region [str, optional] The selected region

Notes

Note that the device and region options are optional. If the region is not specified, the parameter
is retrieved for the entire device. If the device is not specified, the parameter is retrieved for all devices.
Unlike the ds.getParameter(), parameter names on the the device are not retrieved if they do
not exist on the region. Similarly, the parameter names over all devices are not retrieved if they do not
exist on the device.

devsim.open_db(filename, permissions)
Open a database storing material properties

Parameters

filename [str] filename to create for the db

permissions [str, optional] permissions on the db (default ‘readonly’)

devsim.save_db()
Saves any new or modified db entries to the database file

devsim.set_material(device, region, contact, material)
Sets the new material for a region

Parameters

device [str, optional] The selected device

region [str, optional] The selected region

contact [str, optional] Contact on which to apply this command

14.4. Material Commands 67

DEVSIM Manual, Release 1.0.0-rc1

material [str] New material name

devsim.set_parameter(device, region, name, value)
Set a parameter on region, device, or globally

Parameters

device [str, optional] The selected device

region [str, optional] The selected region

name [str] Name of the parameter name being retrieved

value [any] value to set for the parameter

Notes

Note that the device and region options are optional. If the region is not specified, the parameter is set
for the entire device. If the device is not specified, the parameter is set for all devices.

14.5 Meshing Commands

Commands for reading and writing meshes

devsim.add_1d_contact(material, mesh, name, tag)
Add a contact to a 1D mesh

Parameters

material [str] material for the contact being created

mesh [str] Mesh to add the contact to

name [str] Name for the contact being created

tag [str] Text label for the position to add the contact

devsim.add_1d_interface(mesh, tag, name)
Add an interface to a 1D mesh

Parameters

mesh [str] Mesh to add the interface to

tag [str] Text label for the position to add the interface

name [str] Name for the interface being created

devsim.add_1d_mesh_line(mesh, tag, pos, ns, ps)
Add a mesh line to a 1D mesh

Parameters

mesh [str] Mesh to add the line to

tag [str, optional] Text label for the position

68 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

pos [str] Position for the mesh point

ns [Float, optional] Spacing from this point in the negative direction (default ps value)

ps [Float] Spacing from this point in the positive direction

devsim.add_1d_region(mesh, tag1, tag2, region, material)
Add a region to a 1D mesh

Parameters

mesh [str] Mesh to add the line to

tag1 [str] Text label for the position bounding the region being added

tag2 [str] Text label for the position bounding the region being added

region [str] Name for the region being created

material [str] Material for the region being created

devsim.add_2d_contact(name, material, mesh, region, xl, xh, yl, yh, bloat)
Add an interface to a 2D mesh

Parameters

name [str] Name for the contact being created

material [str] material for the contact being created

mesh [str] Mesh to add the contact to

region [str] Name of the region included in the contact

xl [Float, optional] x position for corner of bounding box (default -MAXDOUBLE)

xh [Float, optional] x position for corner of bounding box (default +MAXDOUBLE)

yl [Float, optional] y position for corner of bounding box (default -MAXDOUBLE)

yh [Float, optional] y position for corner of bounding box (default +MAXDOUBLE)

bloat [Float, optional] Extend bounding box by this amount when search for mesh to
include in region (default 1e-10)

devsim.add_2d_interface(mesh, name, region0, region1, xl, xh, yl, yh, bloat)
Add an interface to a 2D mesh

Parameters

mesh [str] Mesh to add the interface to

name [str] Name for the interface being created

region0 [str] Name of the region included in the interface

region1 [str] Name of the region included in the interface

xl [Float, optional] x position for corner of bounding box (default -MAXDOUBLE)

xh [Float, optional] x position for corner of bounding box (default +MAXDOUBLE)

14.5. Meshing Commands 69

DEVSIM Manual, Release 1.0.0-rc1

yl [Float, optional] y position for corner of bounding box (default -MAXDOUBLE)

yh [Float, optional] y position for corner of bounding box (default +MAXDOUBLE)

bloat [Float, optional] Extend bounding box by this amount when search for mesh to
include in region (default 1e-10)

devsim.add_2d_mesh_line(mesh, pos, ns, ps)
Add a mesh line to a 2D mesh

Parameters

mesh [str] Mesh to add the line to

pos [str] Position for the mesh point

ns [Float] Spacing from this point in the negative direction

ps [Float] Spacing from this point in the positive direction

devsim.add_2d_region(mesh, region, material, xl, xh, yl, yh, bloat)
Add a region to a 2D mesh

Parameters

mesh [str] Mesh to add the region to

region [str] Name for the region being created

material [str] Material for the region being created

xl [Float, optional] x position for corner of bounding box (default -MAXDOUBLE)

xh [Float, optional] x position for corner of bounding box (default +MAXDOUBLE)

yl [Float, optional] y position for corner of bounding box (default -MAXDOUBLE)

yh [Float, optional] y position for corner of bounding box (default +MAXDOUBLE)

bloat [Float, optional] Extend bounding box by this amount when search for mesh to
include in region (default 1e-10)

devsim.add_genius_contact(genius_name, material, mesh, name, region)
Create a contact for an imported Genius mesh

Parameters

genius_name [str] boundary condition name in the Genius CGNS file

material [str] material for the contact being created

mesh [str] name of the mesh being generated

name [str] name of the contact begin created

region [str] region that the contact is attached to

devsim.add_genius_interface(genius_name, mesh, name, region0, region1)
Create an interface for an imported Genius mesh

Parameters

70 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

genius_name [str] boundary condition name in the Genius CGNS file

mesh [str] name of the mesh being generated

name [str] name of the interface begin created

region0 [str] first region that the interface is attached to

region1 [str] second region that the interface is attached to

devsim.add_genius_region(genius_name, mesh, region, material)
Create a region for an imported Genius mesh

Parameters

genius_name [str] region name in the Genius CGNS file

mesh [str] name of the mesh being generated

region [str] name of the region begin created

material [str] material for the region being created

devsim.add_gmsh_contact(gmsh_name, material, mesh, name, region)
Create a mesh to import a Gmsh mesh

Parameters

gmsh_name [str] physical group name in the Gmsh file

material [str] material for the contact being created

mesh [str] name of the mesh being generated

name [str] name of the contact begin created

region [str] region that the contact is attached to

devsim.add_gmsh_interface(gmsh_name, mesh, name, region0, region1)
Create an interface for an imported Gmsh mesh

Parameters

gmsh_name [str] physical group name in the Gmsh file

mesh [str] name of the mesh being generated

name [str] name of the interface begin created

region0 [str] first region that the interface is attached to

region1 [str] second region that the interface is attached to

devsim.add_gmsh_region(gmsh_name, mesh, region, material)
Create a region for an imported Gmsh mesh

Parameters

gmsh_name [str] physical group name in the Gmsh file

mesh [str] name of the mesh being generated

14.5. Meshing Commands 71

DEVSIM Manual, Release 1.0.0-rc1

region [str] name of the region begin created

material [str] material for the region being created

devsim.create_1d_mesh(mesh)
Create a mesh to create a 1D device

Parameters

mesh [str] name of the 1D mesh being created

devsim.create_2d_mesh(mesh)
Create a mesh to create a 2D device

Parameters

mesh [str] name of the 2D mesh being created

devsim.create_contact_from_interface(device, region, interface, material, name)
Creates a contact on a device from an existing interface

Parameters

device [str] The selected device

region [str] The selected region

interface [str] Interface on which to apply this command

material [str] material for the contact being created

name [str] name of the contact begin created

devsim.create_device(mesh, device)
Create a device from a mesh

Parameters

mesh [str] name of the mesh being used to create a device

device [str] name of the device being created

devsim.create_genius_mesh(file, mesh)
This command reads in a Genius mesh written in the CGNS format

Parameters

file [str] name of the Genius mesh file being read into DEVSIM

mesh [str] name of the mesh being generated

Notes

If successful, this command will return a dictionary containing information about the regions and
boundaries in the mesh. Please see the example in Genius (page 37) for an example of how this
information can be used for adding contacts and interfaces to the structure being created.

72 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

If the CGNS file was created with HDF as the underlying storage format, it may be neces-
sary to convert it to ADF using the hdf2adf command before reading it into DEVSIM.
This command is available as part of the CGNS library when it is compiled with HDF
support. Please CGNS (page 56) for availablility. }

devsim.create_gmsh_mesh(mesh, file, coordinates, elements, physical_names)
Create a mesh to import a Gmsh mesh

Parameters

mesh [str] name of the mesh being generated

file [str, optional] name of the Gmsh mesh file being read into DEVSIM

coordinates [list, optional] List of coordinate positions on mesh.

elements [list, optional] List of elements on the mesh.

physical_names [list, optional] List of names for each contact, interface, and region
on mesh.

Notes

This file will import a Gmsh format mesh from a file. Alternatively, the mesh structure may be passed
in as as arguments:

coordinates is a float list of positions in the mesh. Each coordinate adds an x, y, and z position
so that the coordinate list length is 3 times the number of coordinates.

physical_names is a list of contact, interface, and region names. It is referenced by index by the
elements list.

elements is a list of elements. Each element adds

• Element Type (float)

– 0 node

– 1 edge

– 2 triangle

– 3 tetrahedron

• Physical Index

– This indexes into the physical_names list.

• Nodes

– Each node of the element indexes into the coordinates list.

devsim.finalize_mesh(mesh)
Finalize a mesh so no additional mesh specifications can be added and devices can be created.

Parameters

mesh [str] Mesh to finalize

14.5. Meshing Commands 73

DEVSIM Manual, Release 1.0.0-rc1

devsim.load_devices(file)
Load devices from a DEVSIM file

Parameters

file [str] name of the file to load the meshes from

devsim.write_devices(file, device, type)
Write a device to a file for visualization or restart

Parameters

file [str] name of the file to write the meshes to

device [str, optional] name of the device to write

type [{‘devsim’, ‘devsim_data’, ‘floops’, ‘tecplot’, ‘vtk’}] format to use

14.6 Model Commands

Commands for defining and evaluating models

devsim.contact_edge_model(device, contact, name, equation, display_type)
Create an edge model evaluated at a contact

Parameters

device [str] The selected device

contact [str] Contact on which to apply this command

name [str] Name of the contact edge model being created

equation [str] Equation used to describe the contact edge model being created

display_type [{‘vector’, ‘nodisplay’, ‘scalar’}] Option for output display in graphi-
cal viewer

devsim.contact_node_model(device, contact, name, equation, display_type)
Create an node model evaluated at a contact

Parameters

device [str] The selected device

contact [str] Contact on which to apply this command

name [str] Name of the contact node model being created

equation [str] Equation used to describe the contact node model being created

display_type [{‘scalar’, ‘nodisplay’}] Option for output display in graphical viewer

devsim.cylindrical_edge_couple(device, region)
This command creates the EdgeCouple model for 2D cylindrical simulation

Parameters

74 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

device [str] The selected device

region [str] The selected region

Notes

This model is only available in 2D. The created variables are

• ElementCylindricalEdgeCouple (Element Edge Model)

• CylindricalEdgeCouple (Edge Model)

The ds.set_parameter() must be used to set

• raxis_variable, the variable (x or y) which is the radial axis variable in the cylindrical
coordinate system

• raxis_zero, the location of the z axis for the radial axis variable

devsim.cylindrical_node_volume(device, region)
This command creates the NodeVolume model for 2D cylindrical simulation

Parameters

device [str] The selected device

region [str] The selected region

Notes

This model is only available in 2D. The created variables are

• ElementCylindricalNodeVolume@en0 (Element Edge Model)

• ElementCylindricalNodeVolume@en1 (Element Edge Model)

• CylindricalEdgeNodeVolume@n0 (Edge Model)

• CylindricalEdgeNodeVolume@n1 (Edge Model)

• CylindricalNodeVolume (Node Model)

The ElementCylindricalNodeVolume@en0 and ElementCylindricalNodeVolume@en1
represent the node volume at each end of the element edge.

The ds.set_parameter() must be used to set

• raxis_variable, the variable (x or y) which is the radial axis variable in the cylindrical
coordinate system

• raxis_zero, the location of the z axis for the radial axis variable

devsim.cylindrical_surface_area(device, region)
This command creates the SurfaceArea model for 2D cylindrical simulation

Parameters

14.6. Model Commands 75

DEVSIM Manual, Release 1.0.0-rc1

device [str] The selected device

region [str] The selected region

Notes

This model is only available in 2D. The created variables are

• CylindricalSurfaceArea (Node Model)

and is the cylindrical surface area along each contact and interface node in the device region.

The ds.set_parameter() must be used to set

• raxis_variable, the variable (x or y) which is the radial axis variable in the cylindrical
coordinate system

• raxis_zero, the location of the z axis for the radial axis variable

devsim.debug_triangle_models(device, region)
Debugging command used in the development of DEVSIM and used in regressions.

Parameters

device [str] The selected device

region [str] The selected region

devsim.delete_edge_model(device, region, name)
Deletes an edge model from a region

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the edge model being deleted

devsim.delete_element_model(device, region, name)
Deletes a element model from a region

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the node model being deleted

devsim.delete_interface_model(device, interface, name)
Deletes an interface model from an interface

Parameters

device [str] The selected device

interface [str] Interface on which to apply this command

76 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

name [str] Name of the interface model being deleted

devsim.delete_node_model(device, region, name)
Deletes a node model from a region

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the node model being deleted

devsim.edge_average_model(device, region, node_model, edge_model, derivative, aver-
age_type)

Creates an edge model based on the node model values

Parameters

device [str] The selected device

region [str] The selected region

node_model [str] The node model from which we are creating the edge
model. If derivative is specified, the edge model is created from
nodeModel:derivativeModel

edge_model [str] The edge model name being created. If derivative is spec-
ified, the edge models created are edgeModel:derivativeModel@n0
edgeModel:derivativeModel@n1, which are the derivatives with respect
to the derivative model on each side of the edge

derivative [str, optional] The node model of the variable for which the derivative
is being taken. The node model nodeModel:derivativeModel is used to
create the resulting edge models.

average_type [str, optional] The node models on both sides of the edge are averaged
together to create one of the following types of averages. (default ‘arithmetic’)

Notes

For a node model, creates 2 edge models referring to the node model value at both ends of the edge.
For example, to calculate electric field:

ds.edge_average_model(device=device, region=region, node_model=”Potential”,
edge_model=”ElecticField”, average_type=”negative_gradient”)

and the derivatives ElectricField:Potential@n0 and
ElectricField:Potential@n1 are then created from

ds.edge_average_model(device=device, region=region, node_model=”Potential”,
edge_model=”ElecticField”, average_type=”negative_gradient”, derivative=”Potential”)

devsim.edge_from_node_model(device, region, node_model)
For a node model, creates an 2 edge models referring to the node model value at both ends of the
edge.

14.6. Model Commands 77

DEVSIM Manual, Release 1.0.0-rc1

Parameters

device [str] The selected device

region [str] The selected region

node_model [str] The node model from which we are creating the edge model

Notes

For example, to calculate electric field:

ds.edge_from_node_model(device=device, region=region, node_model=”Potential”)

devsim.edge_model(device, region, name, equation, display_type)
Creates an edge model based on an equation

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the edge model being created

equation [str] Equation used to describe the edge model being created

display_type [str, optional] Option for output display in graphical viewer (default
‘scalar’)

Notes

The vector option uses an averaging scheme for the edge values projected in the direction of each
edge. For a given model, model, the generated components in the visualization files is:

• model_x_onNode

• model_y_onNode

• model_z_onNode (3D)

This averaging scheme does not produce accurate results, and it is recommended to use the ds.
element_from_edge_model() to create components better suited for visualization. See Visu-
alization (page 51) for more information about creating data files for external visualization programs.

devsim.element_from_edge_model(device, region, edge_model, derivative)
Creates element edge models from an edge model

Parameters

device [str] The selected device

region [str] The selected region

edge_model [str] The edge model from which we are creating the element model

derivative [str, optional] The variable we are taking with respect to edge_model

78 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

Notes

For an edge model emodel, creates an element models referring to the directional components on
each edge of the element:

• emodel_x

• emodel_y

If the derivative variable option is specified, the emodel@n0 and emodel@n1 are used to
create:

• emodel_x:variable@en0

• emodel_y:variable@en0

• emodel_x:variable@en1

• emodel_y:variable@en1

• emodel_x:variable@en2

• emodel_y:variable@en2

in 2D for each node on a triangular element. and

• emodel_x:variable@en0

• emodel_y:variable@en0

• emodel_z:variable@en0

• emodel_x:variable@en1

• emodel_y:variable@en1

• emodel_z:variable@en1

• emodel_x:variable@en2

• emodel_y:variable@en2

• emodel_z:variable@en2

• emodel_x:variable@en3

• emodel_y:variable@en3

• emodel_z:variable@en3

in 3D for each node on a tetrahedral element.

The suffix en0 refers to the first node on the edge of the element and en1 refers to the second node.
en2 and en3 specifies the derivatives with respect the variable at the nodes opposite the edges on the
element being considered.

devsim.element_from_node_model(device, region, node_model)
Creates element edge models from a node model

Parameters

14.6. Model Commands 79

DEVSIM Manual, Release 1.0.0-rc1

device [str] The selected device

region [str] The selected region

node_model [str] The node model from which we are creating the edge model

Notes

This command creates an element edge model from a node model so that each corner of the element
is represented. A node model, nmodel, would be be accessible as

• nmodel@en0

• nmodel@en1

• nmodel@en2

• nmodel@en3 (3D)

where en0, and en1 refers to the nodes on the element’s edge. In 2D, en2 refers to the node on the
triangle node opposite the edge. In 3D, en2 and en3 refers to the nodes on the nodes off the element
edge on the tetrahedral element.

devsim.element_model(device, region, name, equation, display_type)
Create a model evaluated on element edges.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the element edge model being created

equation [str] Equation used to describe the element edge model being created

display_type [str, optional] Option for output display in graphical viewer (default
‘scalar’)

devsim.get_edge_model_list(device, region)
Returns a list of the edge models on the device region

Parameters

device [str] The selected device

region [str] The selected region

devsim.get_edge_model_values(device, region, name)
Get the edge model values calculated at each edge.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the edge model values being returned as a list

80 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

devsim.get_element_model_list(device, region)
Returns a list of the element edge models on the device region

Parameters

device [str] The selected device

region [str] The selected region

devsim.get_element_model_values(device, region, name)
Get element model values at each element edge

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the element edge model values being returned as a list

devsim.get_interface_model_list(device, interface)
Returns a list of the interface models on the interface

Parameters

device [str] The selected device

interface [str] Interface on which to apply this command

devsim.get_interface_model_values(device, interface, name)
Gets interface model values evaluated at each interface node.

Parameters

device [str] The selected device

interface [str] Interface on which to apply this command

name [str] Name of the interface model values being returned as a list

devsim.get_node_model_list(device, region)
Returns a list of the node models on the device region

Parameters

device [str] The selected device

region [str] The selected region

devsim.get_node_model_values(device, region, name)
Get node model values evaluated at each node in a region.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the node model values being returned as a list

14.6. Model Commands 81

DEVSIM Manual, Release 1.0.0-rc1

devsim.interface_model(device, interface, equation)
Create an interface model from an equation.

Parameters

device [str] The selected device

interface [str] Interface on which to apply this command

equation [str] Equation used to describe the interface node model being created

devsim.interface_normal_model(device, region, interface)
Creates edge models whose components are based on direction and distance to an interface

Parameters

device [str] The selected device

region [str] The selected region

interface [str] Interface on which to apply this command

Notes

This model creates the following edge models:

• iname_distance

• iname_normal_x (2D and 3D)

• iname_normal_y (2D and 3D)

• iname_normal_z (3D only)

where iname is the name of the interface. The normals are of the closest node on the interface. The
sign is toward the interface.

devsim.node_model(device, region, name, equation, display_type)
Create a node model from an equation.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the node model being created

equation [str] Equation used to describe the node model being created

display_type [str, optional] Option for output display in graphical viewer (default
‘scalar’)

devsim.node_solution(device, region, name)
Create node model whose values are set.

Parameters

device [str] The selected device

82 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

region [str] The selected region

name [str] Name of the solution being created

devsim.print_edge_values(device, region, name)
Print edge values for debugging.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the edge model values being printed to the screen

devsim.print_element_values(device, region, name)
Print element values for debugging.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the element edge model values being printed to the screen

devsim.print_node_values(device, region, name)
Print node values for debugging.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the node model values being printed to the screen

devsim.register_function(name, nargs)
This command is used to register a new Python procedure for evaluation by SYMDIFF.

Parameters

name [str] Name of the function

nargs [str] Number of arguments to the function

devsim.set_node_value(device, region, name, index, value)
A uniform value is used if index is not specified. Note that equation based node models will lose this
value if their equation is recalculated.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the node model being whose value is being set

index [int] Index of node being set

value [Float] Value of node being set

14.6. Model Commands 83

DEVSIM Manual, Release 1.0.0-rc1

devsim.set_node_values(device, region, name, init_from, values)
Set node model values from another node model, or a list of values.

Parameters

device [str] The selected device

region [str] The selected region

name [str] Name of the node model being initialized

init_from [str, optional] Node model we are using to initialize the node solution

values [list, optional] List of values for each node in the region.

devsim.symdiff(expr)
This command returns an expression. All strings are treated as independent variables. It is primarily
used for defining new functions to the parser.

Parameters

expr [str] Expression to send to SYMDIFF

devsim.vector_element_model(device, region, element_model)
Create vector components from an element edge model

Parameters

device [str] The selected device

region [str] The selected region

element_model [str] The element model for which we are calculating the vector com-
poenents

Notes

This command creates element edge models from an element model which represent the vector com-
ponents on the element edge. An element model, emodel, would then have

• emodel_x

• emodel_y

• emodel_z (3D only)

The primary use of these components are for visualization.

devsim.vector_gradient(device, region, node_model, calc_type)
Creates the vector gradient for noise analysis

Parameters

device [str] The selected device

region [str] The selected region

node_model [str] The node model from which we are creating the edge model

84 Chapter 14. Command Reference

DEVSIM Manual, Release 1.0.0-rc1

calc_type [str, optional] The node model from which we are creating the edge model
(default ‘default’)

Notes

Used for noise analysis. The avoidzero option is important for noise analysis, since a node model
value of zero is not physical for some contact and interface boundary conditions. For a given node
model, model, a node model is created in each direction:

• model_gradx (1D)

• model_grady (2D and 3D)

• model_gradz (3D)

It is important not to use these models for simulation, since DEVSIM, does not have a way of evalu-
ating the derivatives of these models. The models can be used for integrating the impedance field, and
other postprocessing. The ds.element_from_edge_model() command can be used to create
gradients for use in a simulation.

14.7 Solver Commands

Commands for simulation

devsim.get_contact_charge(device, contact, equation)
Get charge at the contact

Parameters

device [str] The selected device

contact [str] Contact on which to apply this command

equation [str] Name of the contact equation from which we are retrieving the charge

devsim.get_contact_current(device, contact, equation)
Get current at the contact

Parameters

device [str] The selected device

contact [str] Contact on which to apply this command

equation [str] Name of the contact equation from which we are retrieving the current

devsim.solve(type, solver_type, absolute_error, relative_error, charge_error, gamma, tdelta,
maximum_iterations, frequency, output_node, info)

Call the solver. A small-signal AC source is set with the circuit voltage source.

Parameters

type [{‘dc’, ‘ac’, ‘noise’, ‘transient_dc’, ‘transient_bdf1’, ‘transient_bdf2’, ‘tran-
sient_tr’} required] type of solve being performed

14.7. Solver Commands 85

DEVSIM Manual, Release 1.0.0-rc1

solver_type [{‘direct’, ‘iterative’} required] Linear solver type

absolute_error [Float, optional] Required update norm in the solve (default 0.0)

relative_error [Float, optional] Required relative update in the solve (default 0.0)

charge_error [Float, optional] Relative error between projected and solved charge
during transient simulation (default 0.0)

gamma [Float, optional] Scaling factor for transient time step (default 1.0)

tdelta [Float, optional] time step (default 0.0)

maximum_iterations [int, optional] Maximum number of iterations in the DC solve
(default 20)

frequency [Float, optional] Frequency for small-signal AC simulation (default 0.0)

output_node [str, optional] Output circuit node for noise simulation

info [bool, optional] Solve command return convergence information (default False)

86 Chapter 14. Command Reference

Chapter 15

Example Overview

In the following chapters, examples are presented for the use of DEVSIM to solve some simulation problems.
Examples are also located in the DEVSIM distribution and their location is mentioned in Directory structure
for DEVSIM. (page 54).

The following example directories are contained in the distribution.

15.1 capacitance

These are 1D and 2D capacitor simulations, using the internal mesher. A description of these examples is
presented in Capacitor (page 89).

15.2 diode

This is a collection of 1D, 2D, and 3D diode structures using the internal mesher, as well as Gmsh. These
examples are discussed in Diode (page 99).

15.3 bioapp1

This is a biosensor application.

15.4 genius

This directory has examples importing meshes from Genius Device Simulator.

87

DEVSIM Manual, Release 1.0.0-rc1

15.5 vector_potential

This is a 2d magnetic field simulation solving for the magnetic potential. The simulation script is
vector_potential/twowire.py A simulation result for two wires conducting current is shown in
Fig. 15.1.

x

y

­3 ­2 ­1 0 1 2 3
­3

­2

­1

0

1

2

Frame 001  30 Jul 2011  twowire

Fig. 15.1: Simulation result for solving for the magnetic potential and field. The coloring is by the Z
component of the magnetic potential, and the stream traces are for components of magnetic field.

15.6 mobility

This is an advanced example using electric field dependendent mobility models.

88 Chapter 15. Example Overview

Chapter 16

Capacitor

16.1 Overview

In this chapter, we present a capacitance simulations. The purpose is to demonstrate the use of DEVSIM
with a rather simple example. The first example in 1D Capacitor (page 89) is called cap1d.py and is
located in the examples/capacitance directory distributed with DEVSIM. In this example, we have
manually taken the derivative expressions. In other examples, we will show use of SYMDIFF to create the
derivatives in an automatic fashion. The second example is in 2D Capacitor (page 93).

16.2 1D Capacitor

16.2.1 Equations

In this example, we are solving Poisson’s equation. In differential operator form, the equation to be solved
over the structure is:

𝜖∇2𝜓 = 0

and the contact boundary equations are

𝜓𝑖 − 𝑉𝑐 = 0

where 𝜓𝑖 is the potential at the contact node and 𝑉𝑐 is the applied voltage.

16.2.2 Creating the mesh

The following statements create a one-dimensional mesh which is 1 m long with a 0.1 m spacing. A contact
is placed at 0 and 1 and are named contact1 and contact2 respectively.

89

DEVSIM Manual, Release 1.0.0-rc1

from devsim import *
device="MyDevice"
region="MyRegion"

###
Create a 1D mesh
###
create_1d_mesh (mesh="mesh1")
add_1d_mesh_line (mesh="mesh1", pos=0.0, ps=0.1, tag="contact1")
add_1d_mesh_line (mesh="mesh1", pos=1.0, ps=0.1, tag="contact2")
add_1d_contact (mesh="mesh1", name="contact1", tag="contact1",

material="metal")
add_1d_contact (mesh="mesh1", name="contact2", tag="contact2",

material="metal")
add_1d_region (mesh="mesh1", material="Si", region=region,

tag1="contact1", tag2="contact2")
finalize_mesh (mesh="mesh1")
create_device (mesh="mesh1", device=device)

16.3 Setting device parameters

In this section, we set the value of the permittivity to that of SiO 2.

###
Set parameters on the region
###
set_parameter(device=device, region=region,

name="Permittivity", value=3.9*8.85e-14)

16.3.1 Creating the models

Solving for the Potential, 𝜓, we first create the solution variable.

###
Create the Potential solution variable
###
node_solution(device=device, region=region, name="Potential")

In order to create the edge models, we need to be able to refer to Potential on the nodes on each edge.

###
Creates the Potential@n0 and Potential@n1 edge model
###
edge_from_node_model(device=device, region=region, node_model="Potential")

We then create the ElectricField model with knowledge of Potential on each node, as
well as the EdgeInverseLength of each edge. We also manually calculate the derivative of
ElectricField with Potential on each node and name them ElectricField:Potential@n0
and ElectricField:Potential@n1.

90 Chapter 16. Capacitor

DEVSIM Manual, Release 1.0.0-rc1

###
Electric field on each edge, as well as its derivatives with respect to
the potential at each node
###
edge_model(device=device, region=region, name="ElectricField",

equation="(Potential@n0 - Potential@n1)*EdgeInverseLength")

edge_model(device=device, region=region, name="ElectricField:Potential@n0",
equation="EdgeInverseLength")

edge_model(device=device, region=region, name="ElectricField:Potential@n1",
equation="-EdgeInverseLength")

We create DField to account for the electric displacement field.

###
Model the D Field
###
edge_model(device=device, region=region, name="DField",

equation="Permittivity*ElectricField")

edge_model(device=device, region=region, name="DField:Potential@n0",
equation="diff(Permittivity*ElectricField, Potential@n0)")

edge_model(device=device, region=region, name="DField:Potential@n1",
equation="-DField:Potential@n0")

The bulk equation is now created for the structure using the models and parameters we have previously
defined.

###
Create the bulk equation
###
equation(device=device, region=region, name="PotentialEquation",

variable_name="Potential", edge_model="DField",
variable_update="default")

16.3.2 Contact boundary conditions

We then create the contact models and equations. We use the Python for loop construct and variable
substitutions to create a unique model for each contact, contact1_bc and contact2_bc.

###
Contact models and equations
###
for c in ("contact1", "contact2"):

contact_node_model(device=device, contact=c, name="%s_bc" % c,
equation="Potential - %s_bias" % c)

contact_node_model(device=device, contact=c, name="%s_bc:Potential" % c,

(continues on next page)

16.3. Setting device parameters 91

DEVSIM Manual, Release 1.0.0-rc1

(continued from previous page)

equation="1")

contact_equation(device=device, contact=c, name="PotentialEquation",
variable_name="Potential",
node_model="%s_bc" % c, edge_charge_model="DField")

In this example, the contact bias is applied through parameters named contact1_bias and
contact2_bias. When applying the boundary conditions through circuit nodes, models with respect
to their names and their derivatives would be required.

16.3.3 Setting the boundary conditions

###
Set the contact
###
set_parameter(device=device, region=region, name="contact1_bias", value=1.0e-
→˓0)
set_parameter(device=device, region=region, name="contact2_bias", value=0.0)

###
Solve
###
solve(type="dc", absolute_error=1.0, relative_error=1e-10, maximum_
→˓iterations=30)

###
Print the charge on the contacts
###
for c in ("contact1", "contact2"):

print("contact: %s charge: %1.5e"
% (c, get_contact_charge(device=device, contact=c, equation=

→˓"PotentialEquation")))

16.3.4 Running the simulation

We run the simulation and see the results.

capacitance> python cap1d.py
--

DEVSIM

Version: Beta 0.01

Copyright 2009-2013 Devsim LLC

--

(continues on next page)

92 Chapter 16. Capacitor

DEVSIM Manual, Release 1.0.0-rc1

(continued from previous page)

contact2
(region: MyRegion)
(contact: contact1)
(contact: contact2)

Region "MyRegion" on device "MyDevice" has equations 0:10
Device "MyDevice" has equations 0:10
number of equations 11
Iteration: 0

Device: "MyDevice" RelError: 1.00000e+00 AbsError: 1.00000e+00
Region: "MyRegion" RelError: 1.00000e+00 AbsError: 1.00000e+00

Equation: "PotentialEquation" RelError: 1.00000e+00 AbsError: 1.
→˓00000e+00
Iteration: 1

Device: "MyDevice" RelError: 2.77924e-16 AbsError: 1.12632e-16
Region: "MyRegion" RelError: 2.77924e-16 AbsError: 1.12632e-16

Equation: "PotentialEquation" RelError: 2.77924e-16 AbsError: 1.
→˓12632e-16
contact: contact1 charge: 3.45150e-13
contact: contact2 charge: -3.45150e-13

Which corresponds to our expected result of 3.451510−13 F/cm2 for a homogenous capacitor.

16.4 2D Capacitor

This example is called cap2d.py and is located in the examples/capacitance directory distributed
with DEVSIM. This file uses the same physics as the 1d example, but with a 2d structure. The mesh is built
using the DEVSIM internal mesher. An air region exists with two electrodes in the simulation domain.

16.5 Defining the mesh

from devsim import *
device="MyDevice"
region="MyRegion"

xmin=-25
x1 =-24.975
x2 =-2
x3 =2
x4 =24.975
xmax=25.0

ymin=0.0
y1 =0.1
y2 =0.2
y3 =0.8

(continues on next page)

16.4. 2D Capacitor 93

DEVSIM Manual, Release 1.0.0-rc1

(continued from previous page)

y4 =0.9
ymax=50.0

create_2d_mesh(mesh=device)
add_2d_mesh_line(mesh=device, dir="y", pos=ymin, ps=0.1)
add_2d_mesh_line(mesh=device, dir="y", pos=y1 , ps=0.1)
add_2d_mesh_line(mesh=device, dir="y", pos=y2 , ps=0.1)
add_2d_mesh_line(mesh=device, dir="y", pos=y3 , ps=0.1)
add_2d_mesh_line(mesh=device, dir="y", pos=y4 , ps=0.1)
add_2d_mesh_line(mesh=device, dir="y", pos=ymax, ps=5.0)

device=device
region="air"

add_2d_mesh_line(mesh=device, dir="x", pos=xmin, ps=5)
add_2d_mesh_line(mesh=device, dir="x", pos=x1 , ps=2)
add_2d_mesh_line(mesh=device, dir="x", pos=x2 , ps=0.05)
add_2d_mesh_line(mesh=device, dir="x", pos=x3 , ps=0.05)
add_2d_mesh_line(mesh=device, dir="x", pos=x4 , ps=2)
add_2d_mesh_line(mesh=device, dir="x", pos=xmax, ps=5)

add_2d_region(mesh=device, material="gas" , region="air", yl=ymin, yh=ymax,
→˓xl=xmin, xh=xmax)
add_2d_region(mesh=device, material="metal", region="m1" , yl=y1 , yh=y2 ,
→˓xl=x1 , xh=x4)
add_2d_region(mesh=device, material="metal", region="m2" , yl=y3 , yh=y4 ,
→˓xl=x2 , xh=x3)

must be air since contacts don't have any equations
add_2d_contact(mesh=device, name="bot", region="air", material="metal", yl=y1,
→˓ yh=y2, xl=x1, xh=x4)
add_2d_contact(mesh=device, name="top", region="air", material="metal", yl=y3,
→˓ yh=y4, xl=x2, xh=x3)
finalize_mesh(mesh=device)
create_device(mesh=device, device=device)

16.6 Setting up the models

###
Set parameters on the region
###
set_parameter(device=device, region=region, name="Permittivity", value=3.9*8.
→˓85e-14)

###
Create the Potential solution variable
###
node_solution(device=device, region=region, name="Potential")

(continues on next page)

94 Chapter 16. Capacitor

DEVSIM Manual, Release 1.0.0-rc1

(continued from previous page)

###
Creates the Potential@n0 and Potential@n1 edge model
###
edge_from_node_model(device=device, region=region, node_model="Potential")

###
Electric field on each edge, as well as its derivatives with respect to
the potential at each node
###
edge_model(device=device, region=region, name="ElectricField",

equation="(Potential@n0 - Potential@n1)*EdgeInverseLength")

edge_model(device=device, region=region, name="ElectricField:Potential@n0",
equation="EdgeInverseLength")

edge_model(device=device, region=region, name="ElectricField:Potential@n1",
equation="-EdgeInverseLength")

###
Model the D Field
###
edge_model(device=device, region=region, name="DField",

equation="Permittivity*ElectricField")

edge_model(device=device, region=region, name="DField:Potential@n0",
equation="diff(Permittivity*ElectricField, Potential@n0)")

edge_model(device=device, region=region, name="DField:Potential@n1",
equation="-DField:Potential@n0")

###
Create the bulk equation
###
equation(device=device, region=region, name="PotentialEquation",

variable_name="Potential", edge_model="DField",
variable_update="default")

###
Contact models and equations
###
for c in ("top", "bot"):
contact_node_model(device=device, contact=c, name="%s_bc" % c,

equation="Potential - %s_bias" % c)

contact_node_model(device=device, contact=c, name="%s_bc:Potential" % c,
equation="1")

contact_equation(device=device, contact=c, name="PotentialEquation",
variable_name="Potential",
node_model="%s_bc" % c, edge_charge_model="DField")

(continues on next page)

16.6. Setting up the models 95

DEVSIM Manual, Release 1.0.0-rc1

(continued from previous page)

###
Set the contact
###
set_parameter(device=device, name="top_bias", value=1.0e-0)
set_parameter(device=device, name="bot_bias", value=0.0)

edge_model(device=device, region="m1", name="ElectricField", equation="0")
edge_model(device=device, region="m2", name="ElectricField", equation="0")
node_model(device=device, region="m1", name="Potential", equation="bot_bias;")
node_model(device=device, region="m2", name="Potential", equation="top_bias;")

solve(type="dc", absolute_error=1.0, relative_error=1e-10, maximum_
→˓iterations=30,
solver_type="direct")

16.7 Fields for visualization

Before writing the mesh out for visualization, the element_from_edge_model is used to calculate
the electric field at each triangle center in the mesh. The components are the ElectricField_x and
ElectricField_y.

element_from_edge_model(edge_model="ElectricField", device=device,
→˓region=region)
print(get_contact_charge(device=device, contact="top", equation=
→˓"PotentialEquation"))
print(get_contact_charge(device=device, contact="bot", equation=
→˓"PotentialEquation"))

write_devices(file="cap2d.msh", type="devsim")
write_devices(file="cap2d.dat", type="tecplot")

16.8 Running the simulation

--

DEVSIM

Version: Beta 0.01

Copyright 2009-2013 Devsim LLC

--

(continues on next page)

96 Chapter 16. Capacitor

DEVSIM Manual, Release 1.0.0-rc1

(continued from previous page)

Creating Region air
Creating Region m1
Creating Region m2
Adding 8281 nodes
Adding 23918 edges with 22990 duplicates removed
Adding 15636 triangles with 0 duplicate removed
Adding 334 nodes
Adding 665 edges with 331 duplicates removed
Adding 332 triangles with 0 duplicate removed
Adding 162 nodes
Adding 321 edges with 159 duplicates removed
Adding 160 triangles with 0 duplicate removed
Contact bot in region air with 334 nodes
Contact top in region air with 162 nodes
Region "air" on device "MyDevice" has equations 0:8280
Region "m1" on device "MyDevice" has no equations.
Region "m2" on device "MyDevice" has no equations.
Device "MyDevice" has equations 0:8280
number of equations 8281
Iteration: 0

Device: "MyDevice" RelError: 1.00000e+00 AbsError: 1.00000e+00
Region: "air" RelError: 1.00000e+00 AbsError: 1.00000e+00

Equation: "PotentialEquation" RelError: 1.00000e+00 AbsError: 1.
→˓00000e+00
Iteration: 1

Device: "MyDevice" RelError: 1.25144e-12 AbsError: 1.73395e-13
Region: "air" RelError: 1.25144e-12 AbsError: 1.73395e-13

Equation: "PotentialEquation" RelError: 1.25144e-12 AbsError: 1.
→˓73395e-13
3.35017166004e-12
-3.35017166004e-12

A visualization of the results is shown in Fig. 16.1.

16.8. Running the simulation 97

DEVSIM Manual, Release 1.0.0-rc1

x

y

­6 ­4 ­2 0 2 4 6
0

2

4

6

8

10

Frame 001  25 Jul 2011  MyDevice

Fig. 16.1: Capacitance simulation result. The coloring is by Potential, and the stream traces are for
components of ElectricField.

98 Chapter 16. Capacitor

Chapter 17

Diode

The diode examples are located in the examples/diode. They demonstrate the use of packages located
in the python_packages directory to simulate drift-diffusion using the Scharfetter-Gummel method
[SG69].

17.1 1D diode

17.1.1 Using the python packages

For these examples, python modules are provided to supply the appropriate model and parameter settings.
A listing is shown in Table 17.1. The devsim.python_packages module is part of the distribution.
The example files in the DEVSIM distribution set the path properly when loading modules.

Table 17.1: Python package files.
model_create Creation of models and their derivatives
ramp Ramping bias and automatic stepping
simple_dd Functions for calculating bulk electron and hole current
simple_physics Functions for setting up device physics

For this example, diode_1d.py, the following line is used to import the relevant physics.

from devsim import *
from simple_physics import *

17.1.2 Creating the mesh

This creates a mesh 10−6 cm long with a junction located at the midpoint. The name of the device is
MyDevice with a single region names MyRegion. The contacts on either end are called top and bot.

99

DEVSIM Manual, Release 1.0.0-rc1

def createMesh(device, region):
create_1d_mesh(mesh="dio")
add_1d_mesh_line(mesh="dio", pos=0, ps=1e-7, tag="top")
add_1d_mesh_line(mesh="dio", pos=0.5e-5, ps=1e-9, tag="mid")
add_1d_mesh_line(mesh="dio", pos=1e-5, ps=1e-7, tag="bot")
add_1d_contact (mesh="dio", name="top", tag="top", material="metal")
add_1d_contact (mesh="dio", name="bot", tag="bot", material="metal")
add_1d_region (mesh="dio", material="Si", region=region, tag1="top", tag2=

→˓"bot")
finalize_mesh(mesh="dio")
create_device(mesh="dio", device=device)

device="MyDevice"
region="MyRegion"

createMesh(device, region)

17.2 Physical Models and Parameters

####
Set parameters for 300 K
####
SetSiliconParameters(device, region, 300)
set_parameter(device=device, region=region, name="taun", value=1e-8)
set_parameter(device=device, region=region, name="taup", value=1e-8)

####
NetDoping
####
CreateNodeModel(device, region, "Acceptors", "1.0e18*step(0.5e-5-x)")
CreateNodeModel(device, region, "Donors", "1.0e18*step(x-0.5e-5)")
CreateNodeModel(device, region, "NetDoping", "Donors-Acceptors")
print_node_values(device=device, region=region, name="NetDoping")

####
Create Potential, Potential@n0, Potential@n1
####
CreateSolution(device, region, "Potential")

####
Create potential only physical models
####
CreateSiliconPotentialOnly(device, region)

####
Set up the contacts applying a bias
####
for i in get_contact_list(device=device):

set_parameter(device=device, name=GetContactBiasName(i), value=0.0)
CreateSiliconPotentialOnlyContact(device, region, i)

(continues on next page)

100 Chapter 17. Diode

DEVSIM Manual, Release 1.0.0-rc1

(continued from previous page)

####
Initial DC solution
####
solve(type="dc", absolute_error=1.0, relative_error=1e-12, maximum_
→˓iterations=30)

####
drift diffusion solution variables
####
CreateSolution(device, region, "Electrons")
CreateSolution(device, region, "Holes")

####
create initial guess from dc only solution
####
set_node_values(device=device, region=region,

name="Electrons", init_from="IntrinsicElectrons")
set_node_values(device=device, region=region,

name="Holes", init_from="IntrinsicHoles")

###
Set up equations
###
CreateSiliconDriftDiffusion(device, region)
for i in get_contact_list(device=device):

CreateSiliconDriftDiffusionAtContact(device, region, i)

###
Drift diffusion simulation at equilibrium
###
solve(type="dc", absolute_error=1e10, relative_error=1e-10, maximum_
→˓iterations=30)

####
Ramp the bias to 0.5 Volts
####
v = 0.0
while v < 0.51:

set_parameter(device=device, name=GetContactBiasName("top"), value=v)
solve(type="dc", absolute_error=1e10, relative_error=1e-10, maximum_

→˓iterations=30)
PrintCurrents(device, "top")
PrintCurrents(device, "bot")
v += 0.1

####
Write out the result
####
write_devices(file="diode_1d.dat", type="tecplot")

17.2. Physical Models and Parameters 101

DEVSIM Manual, Release 1.0.0-rc1

17.2.1 Plotting the result

A plot showing the doping profile and carrier densities are shown in Fig. 17.1. The potential and electric
field distribution is shown in Fig. 17.2. The current distributions are shown in Fig. 17.3.

x
0 2E­06 4E­06 6E­06 8E­06 1E­05

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

Acceptors

Donors

Electrons

Holes

Frame 001  29 Jul 2011  MyDevice

Fig. 17.1: Carrier density versus position in 1D diode.

102 Chapter 17. Diode

DEVSIM Manual, Release 1.0.0-rc1

x
0 2E­06 4E­06 6E­06 8E­06 1E­05

0.0x10
+00

1.0x10
­01

2.0x10
­01

3.0x10
­01

4.0x10
­01

5.0x10
­01

­4.0x10
+05

­3.0x10
+05

­2.0x10
+05

­1.0x10
+05

0.0x10
+00

Potential

ElectricField

Frame 001  29 Jul 2011  MyDevice

Fig. 17.2: Potential and electric field versus position in 1D diode.

17.2. Physical Models and Parameters 103

DEVSIM Manual, Release 1.0.0-rc1

x
0 2E­06 4E­06 6E­06 8E­06 1E­05

8.0x10
­03

1.2x10
­02

0.0x10
+00

4.0x10
+21

8.0x10
+21

1.2x10
+22

1.6x10
+22

USRH

ElectronCurrent
HoleCurrent

Frame 001  29 Jul 2011  MyDevice

Fig. 17.3: Electron and hole current and recombination.

104 Chapter 17. Diode

Bibliography

[pyt] Python programming language –- official website. http://www.python.org.

[DEG+99] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu.
A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications,
20(3):720–755, 1999.

[GR09] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 2009.

[MKC02] Richard S. Muller, Theodore I. Kamins, and Mansun Chan. Device Electronics for Integrated
Circuits. John Wiley & Sons, 3 edition, 2002.

[Ous98] John K. Ousterhout. Scripting: higher level programming for the 21st century. IEEE Computer,
31:23–30, 1998.

[SG69] D. L. Scharfetter and H. K. Gummel. Large-signal analysis of a silicon Read diode oscillator.
IEEE Trans. Electron Devices, ED-16(1):64–77, January 1969.

[ApacheSoftwareFoundation] Apache Software Foundation. Apache License, Version 2.0. URL: http:
//www.apache.org/licenses/LICENSE-2.0.html.

105

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

DEVSIM Manual, Release 1.0.0-rc1

106 Bibliography

Index

A
add_1d_contact() (in module devsim), 68
add_1d_interface() (in module devsim), 68
add_1d_mesh_line() (in module devsim), 68
add_1d_region() (in module devsim), 69
add_2d_contact() (in module devsim), 69
add_2d_interface() (in module devsim), 69
add_2d_mesh_line() (in module devsim), 70
add_2d_region() (in module devsim), 70
add_circuit_node() (in module devsim), 59
add_db_entry() (in module devsim), 65
add_genius_contact() (in module devsim), 70
add_genius_interface() (in module devsim), 70
add_genius_region() (in module devsim), 71
add_gmsh_contact() (in module devsim), 71
add_gmsh_interface() (in module devsim), 71
add_gmsh_region() (in module devsim), 71

C
circuit_alter() (in module devsim), 59
circuit_element() (in module devsim), 59
circuit_node_alias() (in module devsim), 60
close_db() (in module devsim), 66
contact_edge_model() (in module devsim), 74
contact_equation() (in module devsim), 60
contact_node_model() (in module devsim), 74
create_1d_mesh() (in module devsim), 72
create_2d_mesh() (in module devsim), 72
create_contact_from_interface() (in module de-

vsim), 72
create_db() (in module devsim), 66
create_device() (in module devsim), 72
create_genius_mesh() (in module devsim), 72
create_gmsh_mesh() (in module devsim), 73
custom_equation() (in module devsim), 61
cylindrical_edge_couple() (in module devsim), 74
cylindrical_node_volume() (in module devsim), 75
cylindrical_surface_area() (in module devsim), 75

D
debug_triangle_models() (in module devsim), 76
delete_contact_equation() (in module devsim), 61
delete_edge_model() (in module devsim), 76
delete_element_model() (in module devsim), 76
delete_equation() (in module devsim), 62
delete_interface_equation() (in module devsim), 62
delete_interface_model() (in module devsim), 76
delete_node_model() (in module devsim), 77
devsim (module), 59, 60, 65, 68, 74, 85

E
edge_average_model() (in module devsim), 77
edge_from_node_model() (in module devsim), 77
edge_model() (in module devsim), 78
element_from_edge_model() (in module devsim),

78
element_from_node_model() (in module devsim),

79
element_model() (in module devsim), 80
equation() (in module devsim), 62

F
finalize_mesh() (in module devsim), 73

G
get_circuit_equation_number() (in module devsim),

60
get_circuit_node_list() (in module devsim), 60
get_circuit_node_value() (in module devsim), 60
get_circuit_solution_list() (in module devsim), 60
get_contact_charge() (in module devsim), 85
get_contact_current() (in module devsim), 85
get_contact_equation_command() (in module de-

vsim), 63
get_contact_equation_list() (in module devsim), 63
get_contact_list() (in module devsim), 65
get_db_entry() (in module devsim), 66
get_device_list() (in module devsim), 65
get_dimension() (in module devsim), 66

107

DEVSIM Manual, Release 1.0.0-rc1

get_edge_model_list() (in module devsim), 80
get_edge_model_values() (in module devsim), 80
get_element_model_list() (in module devsim), 80
get_element_model_values() (in module devsim), 81
get_element_node_list() (in module devsim), 65
get_equation_command() (in module devsim), 63
get_equation_list() (in module devsim), 63
get_equation_numbers() (in module devsim), 63
get_interface_equation_command() (in module de-

vsim), 64
get_interface_equation_list() (in module devsim), 64
get_interface_list() (in module devsim), 65
get_interface_model_list() (in module devsim), 81
get_interface_model_values() (in module devsim),

81
get_material() (in module devsim), 66
get_node_model_list() (in module devsim), 81
get_node_model_values() (in module devsim), 81
get_parameter() (in module devsim), 66
get_parameter_list() (in module devsim), 67
get_region_list() (in module devsim), 65

I
interface_equation() (in module devsim), 64
interface_model() (in module devsim), 81
interface_normal_model() (in module devsim), 82

L
load_devices() (in module devsim), 73

N
node_model() (in module devsim), 82
node_solution() (in module devsim), 82

O
open_db() (in module devsim), 67

P
print_edge_values() (in module devsim), 83
print_element_values() (in module devsim), 83
print_node_values() (in module devsim), 83

R
register_function() (in module devsim), 83

S
save_db() (in module devsim), 67
set_circuit_node_value() (in module devsim), 60

set_material() (in module devsim), 67
set_node_value() (in module devsim), 83
set_node_values() (in module devsim), 83
set_parameter() (in module devsim), 68
solve() (in module devsim), 85
symdiff() (in module devsim), 84

V
vector_element_model() (in module devsim), 84
vector_gradient() (in module devsim), 84

W
write_devices() (in module devsim), 74

108 Index

	List of Figures
	List of Tables
	Front Matter
	Contact
	Copyright
	Documentation License
	Disclaimer
	Trademark

	Release Notes
	Introduction
	1.0.0-rc1 Nov 02, 2018
	July 20, 2018
	May 15, 2017
	February 6, 2016
	November 24, 2015
	November 1, 2015
	September 6, 2015
	August 10, 2015
	July 16, 2015
	June 7, 2015
	October 4, 2014
	December 25, 2013
	September 8, 2013
	August 14, 2013
	July 29, 2013

	Introduction
	Overview
	Goals
	Structures
	Equation assembly
	Parameters
	Circuits
	Meshing
	Analysis
	Scripting interface
	Expression parser
	Visualization and postprocessing
	Installation
	Additional information
	Examples

	Equation and Models
	Overview
	Bulk models
	Interface
	Contact
	Custom matrix assembly
	Cylindrical Coordinate Systems

	Model Parameters
	Parameters
	Material database entries
	Discussion

	Circuits
	Circuit elements
	Connecting devices

	Meshing
	1D mesher
	2D mesher
	Using an external mesher
	Loading and saving results

	Solver
	Solver
	DC analysis
	AC analysis
	Noise/Sensitivity analysis
	Transient analysis

	User Interface
	Starting DEVSIM
	Python Language
	Error handling

	SYMDIFF
	Overview
	Syntax
	Invoking SYMDIFF from DEVSIM

	Visualization
	Introduction
	Using Tecplot
	Using Postmini
	Using Paraview
	Using VisIt
	DEVSIM

	Installation
	Availability
	Supported platforms
	Binary availability
	Source code availability
	Directory Structure
	Running DEVSIM

	Additional Information
	DEVSIM License
	SYMDIFF
	External Software Tools
	Library Availablilty

	Command Reference
	Circuit Commands
	Equation Commands
	Geometry Commands
	Material Commands
	Meshing Commands
	Model Commands
	Solver Commands

	Example Overview
	capacitance
	diode
	bioapp1
	genius
	vector_potential
	mobility

	Capacitor
	Overview
	1D Capacitor
	Setting device parameters
	2D Capacitor
	Defining the mesh
	Setting up the models
	Fields for visualization
	Running the simulation

	Diode
	1D diode
	Physical Models and Parameters

	Bibliography
	Index

